Local-Global Principles in Arithmetic

算术中的局部全局原理

基本信息

  • 批准号:
    1844206
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

Number theory is one of the oldest branches of mathematics, and yet it continues to have more and more applications within the sciences. In this project, the principal investigator (PI) will investigate the relationship between two of the main focuses of number theory, both of which are utilized in computer science as well as physics: (1) prime numbers and the divisibility of integers and (2) algebraic solutions to polynomial equations. The fundamental idea is to understand the extent to which global objects can be arithmetically determined by the collection of its local pieces. The strategies and techniques that will be utilized in this project originate in a broad range of other mathematical subjects, including analysis, geometry, algebra and in some cases, statistics. Some of the specific questions the PI is interested in are at a level accessible to undergraduate and high-school students, and throughout the course of the project, the PI plans to utilize this to continue in educational efforts supporting an increase in diversity within mathematics. This project surrounds the widespread phenomenon of local-global principles throughout algebraic and analytic number theory, ranging from understanding obstructions of unique prime factorization in rings of integers to determining the asymptotic number of global fields with fixed invariants via the number of local extensions with fixed p-adic invariants to proving local-global compatibility results within the Langlands program. First, the PI will conduct research that furthers the statistical study of class groups that originated with the Cohen-Lenstra heuristics; amongst others, this will include proving asymptotics for class groups of families of orders. Second, the PI will study number field distributions and the local-global principles that can control their asymptotics, beginning with the case of octic quaternion number fields. The strategy for obtaining such results will rely on arithmetic invariant theory, sieve methods, and geometry-of-numbers techniques utilized frequently in the field of arithmetic statistics. On the automorphic side, the PI will investigate arithmetic and geometric properties of p-adic families of Galois representations arising from non-conjugate self-dual regular algebraic automorphic representations of the general linear group over CM fields. This will involve studying eigenvarieties and strengthening p-adic interpolation methods.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数论是数学中最古老的分支之一,但它在科学中的应用仍然越来越多。在这个项目中,首席研究员(PI)将研究数论的两个主要焦点之间的关系,这两个焦点都被用于计算机科学和物理:(1)素数和整数的整除性,以及(2)多项式方程的代数解。基本思想是理解全局对象可以在多大程度上由其局部片段的集合算术确定。在这个项目中将使用的策略和技术源于广泛的其他数学科目,包括分析、几何、代数,在某些情况下还包括统计学。国际数学协会感兴趣的一些具体问题是本科生和高中生都能接触到的,在整个项目过程中,国际数学协会计划利用这一点继续支持增加数学多样性的教育努力。这个项目围绕着在代数和解析数论中广泛存在的局部-全局原理现象,从理解整数环中唯一素因式分解的障碍到通过具有固定p不变量的局部扩张的数目来确定具有固定不变量的全局场的渐近数目,到在朗兰兹程序中证明局部-全局相容结果。首先,PI将进行研究,进一步对起源于Cohen-Lenstra启发式的类群进行统计研究;其中,这将包括证明序族类群的渐近性。其次,PI将研究数场分布和可以控制其渐近性的局部-全局原理,从八进制四元数数场的情况开始。获得这种结果的策略将依赖于算术不变量理论、筛法和在算术统计领域中经常使用的数字几何技术。在自同构侧,PI将研究由Cm域上一般线性群的非共轭自对偶正则代数自同构表示所产生的p-ady族Galois表示的算术和几何性质。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The number of $D_4$-fields ordered by conductor
按指挥排序的 $D_4$ 字段的数量
Differential Operators and Families of Automorphic Forms on Unitary Groups of Arbitrary Signature
  • DOI:
    10.25537/dm.2018v23.445-495
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    E. Eischen;Jessica Fintzen;E. Mantovan;Ila Varma
  • 通讯作者:
    E. Eischen;Jessica Fintzen;E. Mantovan;Ila Varma
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kiran Kedlaya其他文献

Kiran Kedlaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kiran Kedlaya', 18)}}的其他基金

p-Adic Computation of L-Functions at Scale
大规模 L 函数的 p-Adic 计算
  • 批准号:
    2053473
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Nonarchimedean Analysis, Geometry, and Computation
非阿基米德分析、几何和计算
  • 批准号:
    1802161
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Applications and extensions of p-adic Hodge theory
p进Hodge理论的应用和扩展
  • 批准号:
    1501214
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
ANTS-X: Algorithmic Number Theory Symposium 2012
ANTS-X:2012年算法数论研讨会
  • 批准号:
    1156412
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Between ordinary and p-adic Hodge theory
普通 Hodge 理论与 p-adic Hodge 理论之间
  • 批准号:
    1101343
  • 财政年份:
    2011
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
CAREER: Cohomological Methods in Algebraic Geometry and Number Theory
职业:代数几何和数论中的上同调方法
  • 批准号:
    0545904
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
p-adic Cohomology and Applications
p-进上同调及其应用
  • 批准号:
    0400727
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Birational geometry and spaces of rational curves
双有理几何和有理曲线空间
  • 批准号:
    0353692
  • 财政年份:
    2004
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Overconvergent Crystals and Modular Forms
过会聚晶体和模块化形式
  • 批准号:
    0071597
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship Award

相似国自然基金

磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
  • 批准号:
    40536030
  • 批准年份:
    2005
  • 资助金额:
    120.0 万元
  • 项目类别:
    重点项目

相似海外基金

Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/2
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Local-to-global principles for random Diophantine equations
随机丢番图方程的局部到全局原理
  • 批准号:
    EP/V048236/1
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/2
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/1
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    2001109
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/1
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Local global principles for torsors under fundamental groups
基本组下 Torsors 的局部全局原则
  • 批准号:
    2071872
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Local-Global Principles in Arithmetic
算术中的局部全局原理
  • 批准号:
    1802350
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:局部全局原理的障碍以及代数结构的应用
  • 批准号:
    1463901
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
FRG: Collab: Obstructions to Local-Global Principles and Applications to Algebraic Structures
FRG:协作:局部全局原理的障碍及其在代数结构中的应用
  • 批准号:
    1463733
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了