Nonarchimedean Analysis, Geometry, and Computation
非阿基米德分析、几何和计算
基本信息
- 批准号:1802161
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project consists of a number of applications of non-archimedean (p-adic) analysis and geometry to problems in arithmetic algebraic geometry, of both theoretical and computational nature. Offshoots of the awarded research include new techniques in the theory of p-adic differential equations, which has previously found applications to computer science; for instance, one of the PI's algorithms for computing zeta functions is widely cited in the cryptography literature. The proposed activities include training of graduate students in several capacities, which promotes enhancement of the US knowledge base; increased access to enrichment activities for low-income students in New York City and Los Angeles; new training opportunities for US undergraduates seeking careers in mathematics education; development of open-source software for mathematics research; and work on interactive open-source curricular materials, including the introduction on a new course on mathematical software. It is hardly an overstatement to assert that the theory of perfectoid spaces since 2010 has triggered a revolution in arithmetic geometry, with rapid advances coming at a previously unknown pace; however, deep improvements in the foundations of the subject are vital in order to sustain this rate of progress. Further work is also needed to fully realize the potential of perfectoid spaces to deepen our understanding of the relationship between geometric and representation-theoretic objects indicated by the Langlands correspondence; in particular, this will require deep insights in order to globalize the hitherto local constructions of p-adic Hodge theory. Separately, computational advances driven by p-adic analysis have had, and will continue to have, a transformative effect on the study of arithmetic-geometric objects and their associated L-functions, by opening up vast new territories for empirical observation. The net effect is to bring number theory back to its roots as an empirically driven subject, thus leading to a new generation of theorems based on experimental predictions (echoing the historical development of such results as quadratic reciprocity and the prime number theorem).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目包括一些应用非阿基米德(p-adic)分析和几何问题的算术代数几何,理论和计算性质。获奖研究的分支包括p-adic微分方程理论中的新技术,该理论以前曾应用于计算机科学;例如,PI用于计算zeta函数的算法之一在密码学文献中被广泛引用。拟议的活动包括:对研究生进行多种能力的培训,以促进美国知识基础的提高;增加纽约市和洛杉矶低收入家庭学生参加丰富活动的机会;为寻求数学教育职业的美国本科生提供新的培训机会;开发用于数学研究的开放源码软件;并致力于互动式开源课程材料,包括介绍数学软件的新课程。 可以毫不夸张地说,自2010年以来,完美空间的理论引发了算术几何的革命,并以前所未有的速度迅速发展;然而,为了保持这种进步速度,对该学科基础的深入改进至关重要。还需要进一步的工作来充分实现完美空间的潜力,以加深我们对朗兰兹对应所指示的几何和表示论对象之间关系的理解;特别是,这将需要深刻的见解,以便将迄今为止的局部构造的p-adic霍奇理论全球化。另外,由p-adic分析驱动的计算进步已经并将继续对算术几何对象及其相关L函数的研究产生变革性影响,为经验观察开辟了广阔的新领域。最终结果是将数论作为一门经验驱动的学科带回到它的根源,从而导致基于实验预测的新一代定理(与二次互反和素数定理等结果的历史发展相呼应)。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Frobenius structures on hypergeometric equations
超几何方程上的 Frobenius 结构
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kedlaya, Kiran S.
- 通讯作者:Kedlaya, Kiran S.
On commutative nonarchimedean Banach fields
关于交换非阿基米德巴拿赫域
- DOI:10.25537/dm.2018v23.171-188
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Kedlaya, Kiran S.
- 通讯作者:Kedlaya, Kiran S.
Isogeny classes of abelian varieties over finite fields in the LMFDB
LMFDB 中有限域上阿贝尔簇的同源类
- DOI:10.1007/978-3-030-80914-0_13
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Dupuy, Taylor;Kedlaya, Kiran S.;Roe, David;Vincent, Christelle
- 通讯作者:Vincent, Christelle
Counterexamples to a Conjecture of Ahmadi and Shparlinski
艾哈迈迪和什帕林斯基猜想的反例
- DOI:10.1080/10586458.2021.1980463
- 发表时间:2021
- 期刊:
- 影响因子:0.5
- 作者:Dupuy, Taylor;Kedlaya, Kiran;Roe, David;Vincent, Christelle
- 通讯作者:Vincent, Christelle
Drinfeld's lemma for perfectoid spaces and overconvergence of multivariate (phi, Gamma)-modules
完美类空间的德林菲尔德引理和多元(phi、Gamma)模的过度收敛
- DOI:10.25537/dm.2021v26.1329-1393
- 发表时间:2021
- 期刊:
- 影响因子:0.9
- 作者:Carter, Annie;Kedlaya, Kiran S.;Zábrádi, Gergely
- 通讯作者:Zábrádi, Gergely
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kiran Kedlaya其他文献
Kiran Kedlaya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kiran Kedlaya', 18)}}的其他基金
p-Adic Computation of L-Functions at Scale
大规模 L 函数的 p-Adic 计算
- 批准号:
2053473 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Applications and extensions of p-adic Hodge theory
p进Hodge理论的应用和扩展
- 批准号:
1501214 - 财政年份:2015
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
ANTS-X: Algorithmic Number Theory Symposium 2012
ANTS-X:2012年算法数论研讨会
- 批准号:
1156412 - 财政年份:2012
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Between ordinary and p-adic Hodge theory
普通 Hodge 理论与 p-adic Hodge 理论之间
- 批准号:
1101343 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Cohomological Methods in Algebraic Geometry and Number Theory
职业:代数几何和数论中的上同调方法
- 批准号:
0545904 - 财政年份:2006
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Birational geometry and spaces of rational curves
双有理几何和有理曲线空间
- 批准号:
0353692 - 财政年份:2004
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Overconvergent Crystals and Modular Forms
过会聚晶体和模块化形式
- 批准号:
0071597 - 财政年份:2000
- 资助金额:
$ 33万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2327098 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
- 批准号:
23K03186 - 财政年份:2023
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)