Diophantine equations and local-global principles: into the wild

丢番图方程和局部全局原理:深入实践

基本信息

  • 批准号:
    MR/T041609/1
  • 负责人:
  • 金额:
    $ 131.73万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Studying integer (whole number) solutions to polynomial equations is the oldest field in mathematics, containing problems that have remained unsolved for millennia. Furthermore, its applications to cryptography and security make it one of the most high-impact areas of pure mathematics. Cryptosystems rely on the computational hardness of mathematical problems to protect our data. The realm of integer solutions to polynomial equations is a natural source of hard problems to underpin modern cryptosystems. For example, it can claim credit for the development of elliptic curve cryptography (ECC). This is a public key cryptographic system that has been widely used for over a decade by big players such as the USA National Security Agency and Microsoft. For instance, ECC is used to protect our credit card details when we make purchases over the internet. Cybersecurity is of crucial national importance in protecting data at the individual, corporate and state level and its role in daily life is increasing as more of our economic, administrative and social interactions take place online.The deep knowledge of elliptic curves needed for the development of ECC was gained by pursuing blue sky research in mathematics, of which the most famous recent example is Andrew Wiles' 1995 proof of Fermat's Last Theorem. This concerns one particular family of polynomial equations, namely x^n+y^n = z^n. When n=2, this is Pythagoras' equation relating the side lengths of a right-angled triangle. There are infinitely many integer solutions to this equation (e.g. x = 3, y = 4, z = 5) and we even have a formula for them. However, when n is greater than 2, the behaviour is very different. Fermat conjectured in 1637 that there were no positive integer solutions to the equation x^n+y^n = z^n for n greater than 2. The proof of this fact took more than 350 years and required the development of very advanced mathematical techniques. In September 2019, Google announced that they had achieved 'quantum supremacy', having developed a quantum computer that performed a task in 200 seconds where a top-range supercomputer would take 10,000 years. This stunning achievement presents a looming crisis for the cryptosystems protecting our data. A quantum computer that can solve the mathematical problems underlying current cryptosystems in seconds rather than millennia would be able to decrypt encrypted data and compromise its security. Security agencies and technology companies are urgently seeking new, and harder, mathematical problems to underlie post-quantum cryptographic systems and they are keen to collaborate with mathematicians to achieve this.My proposal is to study integer solutions to a much larger and more complex class of polynomial equations than elliptic curves, using a wide variety of techniques from number theory, algebra, geometry and analysis. The modern approach looks first for so-called local solutions and then investigates whether a collection of them can be patched together to form a global (meaning integer) solution. However, this local-global method is not always successful. I will study the reasons for its failure and conduct a statistical analysis of the frequency of these failures within families of equations. I will break new ground by tackling cases that have so far been untouched due to their complexity: the 'wild' in my title is an adjective used by mathematicians to describe mathematical objects whose behaviour is particularly difficult to handle. Recent breakthroughs in number theory mean the time is ripe to grapple with these wild problems. I will collaborate with leading cryptographers to explore possibilities arising from my research for new hard mathematical problems that can be used to underpin cryptosystems that can resist attacks by quantum computers.
研究多项式方程的整数解是数学中最古老的领域,包含了数千年来一直未解决的问题。此外,它在密码学和安全方面的应用使其成为纯数学中最具影响力的领域之一。密码系统依赖于数学问题的计算难度来保护我们的数据。多项式方程的整数解领域是支撑现代密码系统的难题的自然来源。例如,它可以声称对椭圆曲线密码学(ECC)的发展有贡献。这是一种公钥加密系统,已被美国国家安全局和微软等大公司广泛使用了十多年。例如,ECC用于在我们通过互联网购物时保护我们的信用卡详细信息。网络安全在保护个人、企业和国家层面的数据方面具有至关重要的国家重要性,随着我们越来越多的经济、行政和社会互动发生在网上,网络安全在日常生活中的作用也越来越大。发展ECC所需的椭圆曲线的深入知识是通过追求数学方面的蓝天研究获得的,其中最近最著名的例子是安德鲁·怀尔斯(Andrew Wiles)1995年对费马大定理的证明。这涉及一个特殊的多项式方程族,即x^n+y^n = z^n。当n=2时,这是毕达哥拉斯关于直角三角形边长的方程。这个方程有无穷多个整数解(例如x = 3,y = 4,z = 5),我们甚至有一个公式。然而,当n大于2时,行为非常不同。费马在1637年证明,当n大于2时,方程x^n+y^n = z^n没有正整数解。这一事实的证明花了350多年的时间,需要非常先进的数学技术的发展。2019年9月,谷歌宣布他们已经实现了“量子至上”,开发了一台量子计算机,它在200秒内完成了一项任务,而顶级超级计算机需要10,000年。这一惊人的成就为保护我们数据的密码系统带来了迫在眉睫的危机。量子计算机可以在几秒钟而不是几千年内解决当前密码系统的数学问题,它将能够解密加密数据并危及其安全性。安全机构和技术公司正在迫切地寻找新的、更困难的数学问题来支撑后量子密码系统,他们热衷于与数学家合作实现这一目标。我的建议是研究一类比椭圆曲线更大、更复杂的多项式方程的整数解,使用数论、代数、几何和分析等多种技术。现代方法首先寻找所谓的局部解,然后研究它们的集合是否可以拼凑在一起形成一个全局(整数)解。然而,这种局部-全局方法并不总是成功的。我将研究其失败的原因,并对方程组中这些失败的频率进行统计分析。我将通过处理迄今为止由于其复杂性而未触及的案例来开辟新天地:我的标题中的“野生”是数学家用来描述其行为特别难以处理的数学对象的形容词。最近数论的突破意味着解决这些疯狂问题的时机已经成熟。我将与领先的密码学家合作,探索从我的研究中产生的新的硬数学问题的可能性,这些问题可用于支持可以抵抗量子计算机攻击的密码系统。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Number fields with prescribed norms (with an appendix by Yonatan Harpaz and Olivier Wittenberg)
具有规定范数的数字字段(附录由 Yonatan Harpaz 和 Olivier Wittenberg 编写)
Explicit methods for the Hasse norm principle and applications to A n and S n extensions
哈斯范数原理的显式方法及其在 An 和 S n 扩展中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Newton其他文献

Counting curve types
计数曲线类型
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tarik Aougab;J. Souto;J. Ramos;Shu Kawaguchi;S. Mukai;K. Yoshikawa;T. Ikeda;H. Katsurada;Geo Kam;C. Frei;D. Loughran;Rachel Newton;M. Conti;Valeria Danese;V. Pata
  • 通讯作者:
    V. Pata
Transcendental Brauer groups of products of CM elliptic curves
CM 椭圆曲线乘积的超越布劳尔群
Machine learning for modular multiplication
模乘的机器学习
  • DOI:
    10.48550/arxiv.2402.19254
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kristin E. Lauter;C. Li;Krystal Maughan;Rachel Newton;Megha Srivastava
  • 通讯作者:
    Megha Srivastava
Bad reduction of genus $3$ curves with complex multiplication
使用复数乘法对 genus $3$ 曲线进行不好的约简
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Bouw;J. Cooley;K. Lauter;E. García;M. Manes;Rachel Newton;Ekin Ozman
  • 通讯作者:
    Ekin Ozman
Bad Reduction of Genus Three Curves with Complex Multiplication
复数乘法的亏格三曲线的不良约简
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Bouw;J. Cooley;K. Lauter;E. García;M. Manes;Rachel Newton;Ekin Ozman
  • 通讯作者:
    Ekin Ozman

Rachel Newton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Newton', 18)}}的其他基金

Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/2
  • 财政年份:
    2021
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Fellowship
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/2
  • 财政年份:
    2021
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Research Grant
Local-global principles: arithmetic statistics and obstructions
局部全局原则:算术统计和障碍
  • 批准号:
    EP/S004696/1
  • 财政年份:
    2018
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Research Grant

相似国自然基金

非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大气、海洋科学中偏微分方程和随机动力系统的研究
  • 批准号:
    10801017
  • 批准年份:
    2008
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Approximation of transport maps from local and non-local Monge-Ampere equations
根据局部和非局部 Monge-Ampere 方程近似输运图
  • 批准号:
    2308856
  • 财政年份:
    2023
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Standard Grant
Algebraic study of local functional equations
局部函数方程的代数研究
  • 批准号:
    23K03061
  • 财政年份:
    2023
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Hodge theory of Knizhnik-Zamolodchikov equations and Rigid Local Systems
Knizhnik-Zamolodchikov 方程和刚性局部系统的 Hodge 理论
  • 批准号:
    2302288
  • 财政年份:
    2023
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Standard Grant
Diophantine equations and local-global principles: into the wild
丢番图方程和局部全局原理:深入实践
  • 批准号:
    MR/T041609/2
  • 财政年份:
    2021
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Fellowship
Study on local functional equations form representation theory and geometry
局部函数方程形式表示论与几何的研究
  • 批准号:
    21K03169
  • 财政年份:
    2021
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Local-to-global principles for random Diophantine equations
随机丢番图方程的局部到全局原理
  • 批准号:
    EP/V048236/1
  • 财政年份:
    2021
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Research Grant
Long-time behaviour for kinetic models of clustering and non-local diffusion equations
聚类和非局部扩散方程动力学模型的长期行为
  • 批准号:
    396845724
  • 财政年份:
    2018
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Research Fellowships
Variational study of non-local nonlinear elliptic equations
非局部非线性椭圆方程的变分研究
  • 批准号:
    17H02855
  • 财政年份:
    2017
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-local equations at work
工作中的非局部方程
  • 批准号:
    DP170104880
  • 财政年份:
    2017
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Discovery Projects
Characterization of polynomials which satisfy local functional equations
满足局部函数方程的多项式的表征
  • 批准号:
    17K05209
  • 财政年份:
    2017
  • 资助金额:
    $ 131.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了