RoL: EAGER: DESYN-C3: Synthetic Biogenesis of Eukaryotic Cells
RoL:EAGER:DESYN-C3:真核细胞的合成生物发生
基本信息
- 批准号:1844299
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The nucleus is where a cell stores information. The endoplasmic reticulum (ER) is where cells manufacture proteins. Mitochondria are where cells generate energy. Designing cells to mimic human cells will likely involve replicating at least those core functions. This project will attempt to do just that. The project will involve artificial chromosomes being packaged into a compartment surrounded by a membrane, representing the nucleus. The nucleus will be surrounded by a folded membrane structure that mimics the ER. Inside the ER will be machinery to produce proteins. A separate membrane compartment, unattached to the other two, will house enzymes for generating energy. All of these will be contained in another membrane compartment and together, represent a crude synthetic cell. Creating the individual compartments will be challenging because the membranes have to allow some molecules to pass through them selectively while preventing others, and because some membranes will need to have intricate shapes. If the project is successful, it will provide a platform for subsequent efforts to use these types of synthetic cells to manufacture vaccines or to kill tumors, just to name a couple of possibilities. The project will involve a team of local high school students in all phases of the research through the International Genetically Engineered Machine (iGEM) competition.This project will develop the techniques needed to engineer cell-like structures, enabling the development of complex synthetic systems mimicking both structure and function of biological cells. There are two major tasks. First, microfluidic techniques will be employed to assemble a defined population of chromosomes within a discrete aqueous volume. A nuclear envelope will be formed around the chromosomes and interconnected with a folded ER-like membrane engineered using curvature-promoting proteins. Biological components extracted from cells will be integrated into the membrane. A nuclear lamina will be formed within the nucleus. Transcription of mRNA within the synthetic nuclei will then be demonstrated. Second, mitochondria-like structures will be developed to serve as ATP sources for mRNA transcription. A vesicle-based approach will support external control over mRNA transcription through mitochondria-nucleus ATP transport. This project will contribute to understanding the requirements for synthesizing and linking other cell-like organelles with increasing levels of complexity. That will create new opportunities for exploring open questions such as membrane how and why cells age. Synthetic cells could ultimately be exploited for closed loop control over DNA processing and gene regulation, with significant potential for practical biomedical applications including cancer immunotherapy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
细胞核是细胞存储信息的地方。内质网(ER)是细胞制造蛋白质的地方。线粒体是细胞产生能量的地方。设计细胞来模仿人类细胞可能至少涉及复制这些核心功能。这个项目将试图做到这一点。该项目将把人造染色体包装成一个隔间,由一层膜包围,代表细胞核。细胞核将被模拟内质网的折叠膜结构所包围。内质网内部将是生产蛋白质的机器。一个独立的隔膜隔间,与另外两个隔膜分离,将容纳产生能量的酶。所有这些都将被装在另一个膜室里,一起代表一个粗制的合成细胞。创建单独的隔室将是具有挑战性的,因为膜必须允许一些分子选择性地通过它们,同时防止其他分子通过,而且因为一些膜需要具有复杂的形状。如果该项目成功,它将为使用这些类型的合成细胞制造疫苗或杀死肿瘤的后续努力提供一个平台,仅举几个可能性。该项目将包括一个由当地高中生组成的团队,通过国际基因工程机器(IGEM)竞赛参与研究的各个阶段。该项目将开发设计类细胞结构所需的技术,使开发模拟生物细胞结构和功能的复杂合成系统成为可能。有两项主要任务。首先,微流控技术将被用来在离散的水体积内组装确定的染色体群体。核包膜将在染色体周围形成,并与使用曲率促进蛋白设计的折叠内质网样膜相互连接。从细胞中提取的生物成分将被整合到膜中。核内将形成一层核层。然后将演示合成细胞核内的mRNA转录。其次,线粒体样结构将被开发为mRNA转录的ATP来源。基于囊泡的方法将通过线粒体-细胞核ATP运输支持对mRNA转录的外部控制。该项目将有助于理解合成和连接复杂程度越来越高的其他细胞样细胞器的要求。这将为探索细胞膜如何以及为什么衰老等悬而未决的问题创造新的机会。合成细胞最终可能被用于DNA处理和基因调控的闭环控制,在包括癌症免疫治疗在内的实际生物医学应用中具有巨大的潜力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Transglutaminase-mediated assembly of multi-enzyme pathway onto TMV brush surfaces for synthesis of bacterial autoinducer-2
- DOI:10.1088/1758-5090/ab9e7a
- 发表时间:2020-10-01
- 期刊:
- 影响因子:9
- 作者:Bhokisham, Narendranath;Liu, Yi;Bentley, William E.
- 通讯作者:Bentley, William E.
Rapid Electroformation of Biopolymer Gels in Prescribed Shapes and Patterns: A Simpler Alternative to 3-D Printing
- DOI:10.1021/acsami.9b12575
- 发表时间:2019-10-09
- 期刊:
- 影响因子:9.5
- 作者:Gargava, Ankit;Ahn, Sohyun;Raghavan, Srinivasa R.
- 通讯作者:Raghavan, Srinivasa R.
Computer vision applied to membrane displacement trap arrays for automated droplet control and manipulation
计算机视觉应用于膜位移陷阱阵列,用于自动液滴控制和操作
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:M. Yeh, J. Harriot
- 通讯作者:M. Yeh, J. Harriot
A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation
- DOI:10.1063/1.5143434
- 发表时间:2020-01-01
- 期刊:
- 影响因子:3.2
- 作者:Babahosseini, Hesam;Padmanabhan, Supriya;DeVoe, Don L.
- 通讯作者:DeVoe, Don L.
Microfluidic on-demand droplet generation, storage, retrieval, and merging for single-cell pairing
- DOI:10.1039/c8lc01178h
- 发表时间:2019-02-07
- 期刊:
- 影响因子:6.1
- 作者:Babahosseini, Hesam;Misteli, Tom;DeVoe, Don L.
- 通讯作者:DeVoe, Don L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don DeVoe其他文献
Don DeVoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don DeVoe', 18)}}的其他基金
Scalable Isolation of Therapeutic Bio-nanoparticles Using Microhydrocyclones
使用微水力旋流器大规模分离治疗性生物纳米颗粒
- 批准号:
1950234 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Trap Array Chips Enabling Rapid, Automated, and Portable Antibiotic Resistance Screening
陷阱阵列芯片实现快速、自动化和便携式抗生素耐药性筛查
- 批准号:
1609074 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Continuous-Flow Microfluidic Nanomanufacturing of Nanomedicines
纳米药物的连续流微流控纳米制造
- 批准号:
1562468 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Immunoliposome Formation via Microfluidic Flow Focusing
通过微流体流动聚焦形成免疫脂质体
- 批准号:
0966407 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
NIRT: Nanofluidic Networks for Single-Molecule Protein Analysis
NIRT:用于单分子蛋白质分析的纳流体网络
- 批准号:
0304318 - 财政年份:2003
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PECASE: Mechanically Robust Micromechanisms
PECASE:机械稳健的微机械装置
- 批准号:
9875817 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Accelerating decarbonization by representing catalysts with natural language
EAGER:通过用自然语言表示催化剂来加速脱碳
- 批准号:
2345734 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant














{{item.name}}会员




