Immunoliposome Formation via Microfluidic Flow Focusing

通过微流体流动聚焦形成免疫脂质体

基本信息

  • 批准号:
    0966407
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2014-03-31
  • 项目状态:
    已结题

项目摘要

0966407DeVoeThe utility of liposomes as functional nanoparticles for biological and biomedical applications is presently limited by the bulk production methods used for their manufacture. For example, although considerable progress has been made towards the commercialization of liposomes as drug delivery vehicles, existing production methods result in polydisperse formulations that exhibit variations in drug encapsulation levels, blood clearance rates, and cell uptake, with negative consequences for drug efficacy and toxicity. Our goal here is to develop a fundamental understanding of the physical processes which drive liposome self-assembly in a new microfluidic process, based on the hydrodynamic focusing of two miscible solvent streams. By taking advantage of the unique interactions that occur at the submicron boundary between the solvent streams, small and uniform unilamellar liposomes may be generated in a simple integrated microfluidic chip. We propose a combined computational and experimental effort to improve our understanding of the liposome selfassembly process within the microfluidic system, and apply this understanding to optimize the process for the integrated and in-line formation of functionalized immunoliposomes.Intellectual Merit: The proposed effort is expected to result in three specific advances in the nanoparticle arena, namely (1) theoretical and direct experimental evaluation leading to an improved understanding of the liposome formation process, made possible by the ability of the microfluidic system to precisely specify chemical and molecular distributions within a well-defined laminar mixing zone, (2) a multi-scale model coupling the underlying physics with system-level parameters including channel geometries and flow conditions, and (3) application of this model to demonstrate fully integrated system for the on-demand production of immunoliposomes with minimal polydispersity, and with diameters that may be dynamically tuned by the simple adjustment of on-chip flow conditions. Thus the combined computational and experimental approach will impact our fundamental understanding of the liposome self-assembly process while also leading to the development of a unique and novel tool for controlled liposome and immunoliposome production.Broader Impact: The ability to generate liposomes with tunable and narrowly distributed diameters over a wide size range has important implications for and range of biological and biomedical applications. The high throughput process is directly scalable to large volume production of encapsulated drugs, together with in-line decoration of liposomes with antibodies or other ligands for targeted drug delivery. As a result of these features, the method offers great promise as a simple and low-cost approach to the production of personalized drug preparations in point-of-care settings. Beyond drug delivery, homogeneous liposomes are also of great value for application to immunoassays, where controlled signal amplification can only occur when the liposome populations exhibit a narrow size distribution [1]. In this application, fluorescent encapsulants within the immunoliposomes provide signal amplification for each antibody-antigen interaction, enabling highly sensitive detection. The microfluidic system itself offers a potential base for future development of an integrated immunosensor platform employing on-demand formation of immunoliposomes. The technology will find application in a range of biosensing systems, including portable and ultrasensitive quantitative diagnostic tests. Finally, the project will contribute to the education of next-generation students at the graduate, undergraduate, and K-12 levels. The project will provide interdisciplinary training of one Ph.D. Bioengineering student who will receive training across the fields of bioengineering, mechanical engineering, and chemistry, providing a solid bridge across these disciplines. Undergraduate students will also be recruited to particulate in the research project through an established NSF sponsored Molecular and Cellular Bioengineering REU Program, and local high school seniors will participate in selected experimental aspects of the project through an established internship program.
脂质体作为功能纳米粒子在生物和生物医学应用中的用途目前受到用于其制造的批量生产方法的限制。例如,尽管在脂质体作为药物输送载体的商业化方面已经取得了相当大的进展,但现有的生产方法导致多分散制剂在药物包封率、血液清除率和细胞摄取方面表现出不同的变化,从而对药物疗效和毒性产生负面影响。我们的目标是在两种可混溶的溶剂流的流体动力学聚焦的基础上,对在一种新的微流控过程中驱动脂质体自组装的物理过程有一个基本的了解。通过利用在溶剂流之间的亚微米边界发生的独特的相互作用,可以在一个简单的集成微流控芯片中产生小而均匀的单层脂质体。我们提出了一种计算和实验相结合的方法来提高我们对微流体系统中脂质体自组装过程的理解,并将这种理解应用于优化功能化免疫脂质体的集成和在线形成过程。智力优点:所提出的努力有望导致纳米颗粒领域的三个具体进展,即(1)理论和直接的实验评估导致对脂质体形成过程的更好的理解,这是由于微流体系统能够精确地指定明确的层流混合区内的化学和分子分布,(2)将基础物理与系统级参数(包括通道几何形状和流动条件)相结合的多尺度模型以及(3)应用该模型展示了按需生产免疫脂质体的完全集成系统,该系统具有最小的多分散性,并且其直径可以通过简单的芯片流动条件的简单调整来动态调节。因此,计算和实验相结合的方法将影响我们对脂质体自组装过程的基本理解,同时也导致开发一种独特而新颖的工具来控制脂质体和免疫脂质体的生产。更广泛的影响:产生直径可调且分布范围较广的脂质体的能力对生物和生物医学应用具有重要意义。高通量工艺可直接扩展到大批量生产胶囊药物,以及用抗体或其他配体对脂质体进行在线修饰,以实现靶向药物输送。由于这些特点,该方法作为一种简单和低成本的方法在护理地点环境中生产个性化药物制剂提供了巨大的前景。除了药物输送,均一脂质体在免疫分析中也有很大的应用价值,在免疫分析中,只有当脂质体群体表现出窄的尺寸分布时,才能进行受控的信号放大[1]。在这一应用中,免疫脂质体内的荧光胶囊为每个抗体-抗原相互作用提供信号放大,从而实现高灵敏度的检测。微流控系统本身为未来开发集成免疫传感器平台提供了潜在的基础,该集成免疫传感器平台采用按需形成免疫脂质体。这项技术将在一系列生物传感系统中得到应用,包括便携式和超灵敏的定量诊断测试。最后,该项目将有助于下一代研究生、本科生和K-12级学生的教育。该项目将为一名生物工程博士生提供跨学科培训,该博士生将接受生物工程、机械工程和化学领域的培训,为这些学科之间提供坚实的桥梁。本科生还将通过NSF赞助的分子和细胞生物工程REU计划招募本科生参与研究项目,当地高中高年级学生将通过现有的实习计划参与该项目的选定实验方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Don DeVoe其他文献

Don DeVoe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Don DeVoe', 18)}}的其他基金

Scalable Isolation of Therapeutic Bio-nanoparticles Using Microhydrocyclones
使用微水力旋流器大规模分离治疗性生物纳米颗粒
  • 批准号:
    1950234
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RoL: EAGER: DESYN-C3: Synthetic Biogenesis of Eukaryotic Cells
RoL:EAGER:DESYN-C3:真核细胞的合成生物发生
  • 批准号:
    1844299
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Trap Array Chips Enabling Rapid, Automated, and Portable Antibiotic Resistance Screening
陷阱阵列芯片实现快速、自动化和便携式抗生素耐药性筛查
  • 批准号:
    1609074
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Continuous-Flow Microfluidic Nanomanufacturing of Nanomedicines
纳米药物的连续流微流控纳米制造
  • 批准号:
    1562468
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
NIRT: Nanofluidic Networks for Single-Molecule Protein Analysis
NIRT:用于单分子蛋白质分析的纳流体网络
  • 批准号:
    0304318
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
PECASE: Mechanically Robust Micromechanisms
PECASE:机械稳健的微机械装置
  • 批准号:
    9875817
  • 财政年份:
    1999
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

The formation and evolution of planetary systems in dense star clusters
  • 批准号:
    11043007
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Oral bacterium Streptococcus mutans promotes tumor metastasis via thrombosis formation
口腔细菌变形链球菌通过血栓形成促进肿瘤转移
  • 批准号:
    24K19985
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Lateral root formation competence of pericycle and lateral toot primordial formation via intercellular coordination
通过细胞间协调的中柱鞘侧根形成能力和侧根原始形成
  • 批准号:
    23H02502
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identifying the process of academic field formation via delayed recognition
通过延迟识别来识别学术领域形成的过程
  • 批准号:
    22KJ0773
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CRCNS Research Proposal: Learning by Looking: Modeling visual system representation formation via foveated sensing in a 3-D world
CRCNS 研究提案:通过观察学习:通过 3D 世界中的注视点感知对视觉系统表征形成进行建模
  • 批准号:
    2309041
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Excellence in Research- Dimeric Bis-Naphthoquinone Formation via a Green and Straightforward Approach Mechanistic and Adaptability Studies
卓越的研究 - 通过绿色和直接的方法形成二聚双萘醌机制和适应性研究
  • 批准号:
    2300447
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mechanisms of cholangiopancreatic cancer ecosystem formation via intercellular networks through disruption of inflammatory regulation
通过破坏炎症调节通过细胞间网络形成胆管胰腺癌生态系统的机制
  • 批准号:
    23H02893
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of a morphogenic mechanism via Delta-Notch signaling pathway - an in vivo examination of a mathematical prediction on biliary formation
通过 Delta-Notch 信号通路阐明形态发生机制 - 胆汁形成数学预测的体内检查
  • 批准号:
    22K20734
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Microporous structure tuning and ultrathin film formation via atmospheric-pressure plasma-enhanced CVD for the development of highly permselective silica membranes
通过大气压等离子体增强 CVD 进行微孔结构调整和超薄膜形成,用于开发高选择性渗透二氧化硅膜
  • 批准号:
    22H01851
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel organosilicon molecular scaffolds as a platform to design positron emission tomography tracers via Si-18F bond formation (SiFEx).
新型有机硅分子支架作为通过 Si-18F 键形成 (SiFEx) 设计正电子发射断层扫描示踪剂的平台。
  • 批准号:
    RGPIN-2022-04300
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Impacts of Gas Accretion and Environment via Multivariate (Spatial) Analysis of Metals, Star formation, and Morphology of Nearby Subaru HSC Galaxies
通过对附近 Subaru HSC 星系的金属、恒星形成和形态进行多元(空间)分析,探索气体吸积和环境的影响
  • 批准号:
    22K14072
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了