CAREER: Engineered Oxide Heterointerfaces With Tunable Vacancy Distributions

职业:具有可调空位分布的工程氧化物异质界面

基本信息

  • 批准号:
    1844493
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

NON-TECHNICAL DESCRIPTION: Many energy conversion and storage applications require chemical reactions along some critical surface or interface to effectively operate. Replacing scarce, expensive noble-metal materials with abundant, cheap, efficient complex metal-oxide alternatives remains a primary challenge facing energy conversion. Missing oxygen atoms in the structure of these alternative oxide materials dictate their functional properties. This research uses novel microscopy methods and classic semiconductor analysis to visualize and quantify the location and amount of missing oxygen atoms across the critical interface under the operating conditions of actual energy conversion systems, in real time. Understanding the fundamental mechanisms of how missing atoms affect energy conversion at the interface is vital to rapidly advancing the development of devices such as fuel cells and electrolyzers. This work trains undergraduate and graduate students across the disciplines of materials science, surface science, and electrochemistry for placement in the energy conversion/storage, electronics, and nanotechnology sectors. This project also includes a fully integrated educational component where an undergraduate student team develops microscopy modules that are demonstrated in both senior capstone and graduate level courses using a portable atomic force microscope. This "flipped" instruction model also allows the undergraduate team to extend their module demonstrations to summer high school programs, and on social media, to inspire underrepresented groups to pursue science and engineering as exciting and worthwhile academic and career pathways.TECHNICAL DETAILS: Oxygen vacancy-mediated reduction, dissociation, or incorporation mechanisms often contribute to the rate-determining step in solid-state electrochemical energy conversion processes. This project combines transformative in situ scan probe microscopy methods with electrostatic analysis to directly observe, and quantify, critical high temperature vacancy-mediated ionic transport phenomena across electroactive oxide interfaces under extreme environmental perturbation, at the nanoscale. The goal of this research is to understand how vacancy distributions evolve across electroactive oxide interfaces as a function of work function engineering, mismatch strain, and/or compositional gradients. These activities train university student researchers in high temperature in situ microscopy and sample preparation to push the frontier of experimental methodology. By directly observing vacancy redistribution across electroceramic interfaces in real time, this project is establishing the structure-property principles necessary for the realization of mechanically-stable, catalytically-active interfaces and advancement of next-generation electrochemical energy conversion systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:许多能量转换和存储应用需要沿着沿着某些临界表面或界面的化学反应以有效地操作。用丰富、廉价、高效的复杂金属氧化物替代品取代稀缺、昂贵的贵金属材料仍然是能源转换面临的主要挑战。在这些替代氧化物材料的结构中缺少氧原子决定了它们的功能特性。这项研究使用新的显微镜方法和经典的半导体分析可视化和量化的位置和数量的失踪氧原子在实际的能量转换系统的操作条件下的关键接口,在真实的时间。了解缺失原子如何影响界面能量转换的基本机制对于快速推进燃料电池和电解槽等设备的开发至关重要。这项工作培养本科生和研究生跨材料科学,表面科学和电化学的学科在能源转换/存储,电子和纳米技术部门的安置。该项目还包括一个完全集成的教育组件,其中一个本科生团队开发的显微镜模块,使用便携式原子力显微镜在高级顶点和研究生课程中进行演示。这种“翻转”教学模式还允许本科团队将其模块演示扩展到夏季高中课程,并在社交媒体上激励未被充分代表的群体追求科学和工程,将其作为令人兴奋和有价值的学术和职业途径。氧空位介导的还原,解离,或掺入机制通常有助于固态电化学能量转换过程中的速率决定步骤。该项目将变革性的原位扫描探针显微镜方法与静电分析相结合,以直接观察和量化极端环境扰动下纳米级电活性氧化物界面的临界高温空位介导的离子传输现象。本研究的目标是了解空位分布如何演变作为功函数工程,失配应变,和/或成分梯度的功能在电活性氧化物界面。这些活动培训大学生研究人员在高温原位显微镜和样品制备,推动实验方法的前沿。通过真实的直接观察电子陶瓷界面上的空位再分布,该项目正在建立实现机械稳定性所必需的结构-性能原理,催化活性界面和下一代该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Roadmap on emerging hardware and technology for machine learning
  • DOI:
    10.1088/1361-6528/aba70f
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Berggren, Karl;Xia, Qiangfei;Raychowdhury, Arijit
  • 通讯作者:
    Raychowdhury, Arijit
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Nonnenmann其他文献

Stephen Nonnenmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Nonnenmann', 18)}}的其他基金

DMREF/Collaborative Research: Conductive Protein Nanowires as Next Generation Polymer Nanocomposite Fillers
DMREF/合作研究:导电蛋白纳米线作为下一代聚合物纳米复合填料
  • 批准号:
    1921839
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Combining Models and Experiment for Quantitative Characterization of Electrocatalytic Carbon Dioxide Reduction on Doped Ceria
合作研究:结合模型和实验定量表征掺杂二氧化铈电催化二氧化碳还原
  • 批准号:
    1706113
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2427263
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2118784
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Sub-Lethal Exposures to Metal and Metal-Oxide Nanoparticles Lead to Antibiotic Resistance in Engineered Environments: A Mechanistic Study
亚致死暴露于金属和金属氧化物纳米颗粒会导致工程环境中的抗生素耐药性:一项机制研究
  • 批准号:
    1916709
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Engineered chiral spin textures and their dynamics in oxide thin films (B12*)
氧化物薄膜中的工程手性自旋纹理及其动力学 (B12*)
  • 批准号:
    290250667
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Collaborative Research Centres
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505609
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
EAGER: BIOMAPS: Understanding Microbiological Intricacies and Developing Modeling Strategies to Estimate Nitrous Oxide Emissions from Urban Engineered Green Infrastructures
EAGER:BIOMAPS:了解微生物的复杂性并制定建模策略来估算城市工程绿色基础设施中的一氧化二氮排放量
  • 批准号:
    1514637
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Modifying oxide surfaces with functional atomic-layers for nano-engineered catalysts
合作研究:用纳米工程催化剂的功能原子层修饰氧化物表面
  • 批准号:
    1505607
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Atomic-Layer Engineered Infrared-Plasmonic, Low Loss, Oxide Metamaterials
原子层工程红外等离子体、低损耗、氧化物超材料
  • 批准号:
    1408743
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Strain Engineered Mixed Ionic Electronic Conducting Solid Oxide Fuel Cell Anode Catalysts
职业:应变工程混合离子电子导电固体氧化物燃料电池阳极催化剂
  • 批准号:
    1254453
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CAREER: Novel Engineered Nanostructured Complex Oxide Thermoelectric Materials for High Temperature Power Generation
职业:用于高温发电的新型工程纳米结构复合氧化物热电材料
  • 批准号:
    1254594
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了