CAREER: Algebraic Curves and Their Moduli: Degenerations and Combinatorics
职业:代数曲线及其模:简并和组合学
基本信息
- 批准号:1844768
- 负责人:
- 金额:$ 39.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is a central subject in mathematics and has connections and applications to many areas in mathematics, physics, and engineering. Algebraic geometers study spaces called algebraic varieties that are defined by polynomial equations. One powerful method of studying these spaces, as used in this project, is the method of degenerations, where a parametrized family of algebraic varieties breaks into pieces in the limit. Roughly speaking, the idea is that one studies the combinatorics, i.e. the discrete data, of the pieces, in order to deduce things about the more complicated original space. The educational component of the project includes a Women in Algebraic Geometry Workshop and a seminar series on diversity and inclusion in mathematics.The research supported by this award will center on using modern degeneration techniques, especially those from the field of tropical geometry, to study classical spaces from algebraic geometry. In one direction, the PI will use these techniques to study the topology of classical moduli spaces of curves and abelian varieties. In another direction, the PI will also advance our understanding of Brill-Noether varieties using the combinatorics of set-valued tableaux, and investigate questions in tableau combinatorics that were motivated by the program in Brill-Noether theory. This award will also support a Women in Algebraic Geometry workshop and a seminar series on diversity and inclusion in mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数几何是数学的中心学科,与数学、物理和工程学的许多领域都有联系和应用。代数几何学家研究由多项式方程定义的称为代数簇的空间。 研究这些空间的一个强有力的方法,在这个项目中使用,是退化的方法,其中一个参数化的代数簇族在极限中分裂成碎片。粗略地说,这个想法是,人们研究组合学,即离散数据,为了推导出更复杂的原始空间的东西。该项目的教育部分包括一个妇女在代数几何讲习班和一个关于数学的多样性和包容性的系列研讨会。该奖项支持的研究将集中在使用现代退化技术,特别是那些来自热带几何领域的技术,从代数几何研究经典空间。在一个方向上,PI将使用这些技术来研究曲线和阿贝尔簇的经典模空间的拓扑。在另一个方向上,PI还将使用集值tableaux的组合学来推进我们对Brill-Noether品种的理解,并调查Brill-Noether理论中的程序所激发的tableau组合学中的问题。 该奖项还将支持一个妇女在代数几何讲习班和一个系列研讨会的多样性和包容性的数学。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tropical curves, graph complexes, and top weight cohomology of $\mathcal {M}_g$
$mathcal {M}_g$ 的热带曲线、复合图和顶重上同调
- DOI:10.1090/jams/965
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Chan, Melody;Galatius, Søren;Payne, Sam
- 通讯作者:Payne, Sam
Combinatorial relations on skew Schur and skew stable Grothendieck polynomials
偏 Schur 和偏稳定 Grothendieck 多项式的组合关系
- DOI:10.5802/alco.144
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chan, Melody;Pflueger, Nathan
- 通讯作者:Pflueger, Nathan
Topology of the tropical moduli spaces $$\Delta _{2,n}$$
热带模空间的拓扑 $$Delta _{2,n}$$
- DOI:10.1007/s13366-021-00563-6
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chan, Melody
- 通讯作者:Chan, Melody
Moduli Spaces of Curves: Classical and Tropical
曲线模空间:古典和热带
- DOI:10.1090/noti2360
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Chan, Melody
- 通讯作者:Chan, Melody
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melody Chan其他文献
Three notions of tropical rank for symmetric matrices
- DOI:
10.1007/s00493-012-2701-4 - 发表时间:
2012-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Dustin Cartwright;Melody Chan - 通讯作者:
Melody Chan
On the weight zero compactly supported cohomology of
${mathcal {H}}_{g,n}$
关于 ${mathcal {H}}_{g,n}$ 的权重零紧支持上同调
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Madeline Brandt;Melody Chan;Siddarth Kannan - 通讯作者:
Siddarth Kannan
The Sn-equivariant top weight Euler characteristic of Mg,n
Mg,n 的 Sn 等变顶重欧拉特征
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Melody Chan;Carel Faber;Soren Galatius;Sam Payne - 通讯作者:
Sam Payne
The distinguishing number of the direct product and wreath product action
- DOI:
10.1007/s10801-006-0006-7 - 发表时间:
2006-07-11 - 期刊:
- 影响因子:0.900
- 作者:
Melody Chan - 通讯作者:
Melody Chan
Melody Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melody Chan', 18)}}的其他基金
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2053221 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Algebraic and Tropical Moduli Spaces and Brill-Noether Theory
代数和热带模空间以及布里尔-诺特理论
- 批准号:
1701924 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Collaborative Research: AGNES: Algebraic Geometry NorthEastern Series
合作研究:AGNES:代数几何东北系列
- 批准号:
1650459 - 财政年份:2017
- 资助金额:
$ 39.99万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New perspective of the sigma functions of algebraic curves and its applications to integrable systems
代数曲线西格玛函数的新视角及其在可积系统中的应用
- 批准号:
21K03289 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial algebraic geometry of curves
曲线的组合代数几何
- 批准号:
564290-2021 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
University Undergraduate Student Research Awards
RUI: Combinatorial Algebraic Geometry: Curves and Their Moduli
RUI:组合代数几何:曲线及其模
- 批准号:
2101861 - 财政年份:2021
- 资助金额:
$ 39.99万 - 项目类别:
Standard Grant
Study on the arithmetic of algebraic curves and its applications using computers
代数曲线算法及其应用的计算机研究
- 批准号:
20K03517 - 财政年份:2020
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on special algebraic curves over fields of positive characteristic via computer algebra
正特征域上特殊代数曲线的计算机代数研究
- 批准号:
19K21026 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The solution of Hurwitz's problem through Galois covers of algebraic curves and study on curves on K3 surfaces
通过代数曲线的伽罗瓦覆盖解决赫尔维茨问题并研究K3曲面上的曲线
- 批准号:
18K03228 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modular Elliptic Curves Applied to Algebraic Number Theory
模椭圆曲线在代数数论中的应用
- 批准号:
528690-2018 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Arithmetic geometry related to the rigidity of hyperbolic algebraic curves
与双曲代数曲线刚性相关的算术几何
- 批准号:
18K03239 - 财政年份:2018
- 资助金额:
$ 39.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)