CAREER: Participatory Design Methods for Algorithmic Systems
职业:算法系统的参与式设计方法
基本信息
- 批准号:1844901
- 负责人:
- 金额:$ 54.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This research will develop methods for applying participatory design to the underlying components of algorithmic systems. Such systems incorporate increasingly complex algorithms from machine learning (ML), natural language processing (NLP), and related areas into user interactions, intending to achieve great benefits. However, cases of egregious errors, algorithmic bias, and other issues have revealed the shortcomings of relying primarily on quantitative performance metrics to inform design. A potential solution is to incorporate users into the design process. Although human-computer interaction research has developed numerous methods for user-centered design, many such approaches focus primarily at the interface level. This focus becomes problematic when a system's functionality is increasingly determined by ML models and algorithms. Furthermore, designing only for users of algorithmic systems can overlook other important relationships, such as the people whose data are being analyzed or those who may interpret the results. To address these issues, this research will develop participatory methods for human-centered design of algorithmic systems. These methods will be developed and tested by working closely with two non-profit organizations that already engage in data-intensive work but currently make limited use of algorithmic systems: AEquitas, which conducts legal analysis, and ProPublica, an investigative journalism newsroom. Unique challenges emerge when attempting to incorporate different people's relationships with a system into the design process. Existing participatory methods often use visual elements or manipulatives to represent interface components. The abstract mathematical formalisms of algorithmic systems, though, do not always lend themselves to such visual representations. This research will develop novel participatory design techniques to establish common ground between domain experts, who are less familiar with ML or NLP, and researchers, who are unfamiliar with the application domain. Doing so can leverage diverse participants' expertise and interpretations, thereby improving the fit between computational systems and existing practices. The participatory methods directly address underlying technical components, from feature selection, to model construction, to performance evaluation, to result interpretation. Furthermore, these methods will align those underlying technical aspects with current practices and lay understandings, increase the chance of catching and rectifying unanticipated egregious errors before they become problematic, and ensure the results are presented in a transparent and accountable manner. Finally, this process will inform the development of modules for classroom instruction, paired across STEM and social science courses, on how to incorporate human-centered concerns into designing algorithmic systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究将开发的方法应用参与式设计的算法系统的基本组成部分。这些系统将机器学习(ML),自然语言处理(NLP)和相关领域的日益复杂的算法融入用户交互中,旨在实现巨大的利益。然而,令人震惊的错误,算法偏差和其他问题的情况下,揭示了主要依赖于定量性能指标来通知设计的缺点。一个潜在的解决方案是将用户纳入设计过程。虽然人机交互研究已经开发了许多以用户为中心的设计方法,但许多这样的方法主要集中在界面层面。当系统的功能越来越多地由ML模型和算法决定时,这种关注就成了问题。此外,只为算法系统的用户设计可能会忽略其他重要的关系,例如数据被分析的人或可能解释结果的人。为了解决这些问题,本研究将开发以人为本的算法系统设计的参与式方法。 这些方法将通过与两个非营利组织密切合作来开发和测试,这两个组织已经从事数据密集型工作,但目前对算法系统的使用有限:进行法律的分析的AEquitas和调查性新闻编辑室ProPublica。当试图将不同的人与系统的关系整合到设计过程中时,会出现独特的挑战。现有的参与式方法通常使用视觉元素或操纵来表示界面组件。然而,算法系统的抽象数学形式并不总是适合这种视觉表示。这项研究将开发新的参与式设计技术,以建立领域专家之间的共同点,谁是不熟悉ML或NLP,和研究人员,谁是不熟悉的应用领域。这样做可以利用不同参与者的专业知识和解释,从而提高计算系统和现有实践之间的契合度。参与式方法直接涉及基本的技术组成部分,从特征选择到模型构建,到绩效评估,再到结果解释。此外,这些方法将使这些基本的技术方面与当前的实践和理解保持一致,增加在出现问题之前发现和纠正意外的严重错误的机会,并确保以透明和负责任的方式呈现结果。最后,这个过程将为STEM和社会科学课程的课堂教学模块的开发提供信息,指导如何将以人为本的关注纳入算法系统的设计中。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topicalizer: reframing core concepts in machine learning visualization by co-designing for interpretivist scholarship
Topicalizer:通过解释主义学术的共同设计重新构建机器学习可视化的核心概念
- DOI:10.1080/07370024.2020.1734460
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baumer, Eric P.;Siedel, Drew;McDonnell, Lena;Zhong, Jiayun;Sittikul, Patricia;McGee, Micki
- 通讯作者:McGee, Micki
Where Do Stories Come From? Examining the Exploration Process in Investigative Data Journalism
故事从何而来?
- DOI:10.1145/3479534
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Showkat, Dilruba;Baumer, Eric P.
- 通讯作者:Baumer, Eric P.
“It’s Like the Value System in the Loop”: Domain Experts’ Values Expectations for NLP Automation
– 就像循环中的价值系统 –:领域专家 – 重视对 NLP 自动化的期望
- DOI:10.1145/3532106.3533483
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Showkat, Dilruba;Baumer, Eric P.
- 通讯作者:Baumer, Eric P.
Evaluating Design Fiction: The Right Tool for the Job
评估设计小说:适合工作的正确工具
- DOI:10.1145/3357236.3395464
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Baumer, Eric P.;Blythe, Mark;Tanenbaum, Theresa Jean
- 通讯作者:Tanenbaum, Theresa Jean
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Baumer其他文献
Social Trust, Firearm Prevalence, and Homicide
- DOI:
10.1016/j.annepidem.2006.07.016 - 发表时间:
2007-02-01 - 期刊:
- 影响因子:
- 作者:
Richard Rosenfeld;Eric Baumer;Steven F. Messner - 通讯作者:
Steven F. Messner
Immigrant Threat or Institutional Context? Examining Police Agency and County Context and the Implementation of the 287(g) Program
移民威胁还是制度背景?
- DOI:
10.1080/00380253.2024.2304335 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Bianca Wirth;Eric Baumer - 通讯作者:
Eric Baumer
Missing Photos, Suffering Withdrawal, or Finding Freedom? How Missing Photos, Suffering Withdrawal, or Finding Freedom? How Experiences of Social Media Non-Use Influence the Likelihood of Experiences of Social Media Non-Use Influence the Likelihood of Reversion Reversion
丢失照片、遭受退缩之苦,还是寻找自由?
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Eric Baumer;Shion Guha;Emily Quan;David Mimno;Geri K. Gay - 通讯作者:
Geri K. Gay
Eric Baumer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Baumer', 18)}}的其他基金
HCC Core: Medium: Making Meaning out of Crisis: Mixed-Methods Investigation into the Nature and Impact of Framing Processes During the COVID-19 Pandemic
HCC 核心:中:危机的意义:对 COVID-19 大流行期间框架过程的性质和影响的混合方法调查
- 批准号:
2212265 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Collaborative Research: A National Assessment of Victimization Risk and Crime Reporting
合作研究:受害风险和犯罪报告的全国评估
- 批准号:
1917952 - 财政年份:2019
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
SaTC: CORE: Small: Collaborative: Algorithms Everywhere: Identifying and Designing for Data Privacy Styles
SaTC:核心:小型:协作:算法无处不在:数据隐私风格的识别和设计
- 批准号:
1814533 - 财政年份:2018
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CHS: Small: Collaborative Research: Tools for Mental Health Reflection: Integrating Social Media with Human-Centered Machine Learning
CHS:小型:协作研究:心理健康反思工具:社交媒体与以人为本的机器学习相结合
- 批准号:
1814909 - 财政年份:2018
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
Collaborative Research: Crime Risk and Police Notification
合作研究:犯罪风险和警方通知
- 批准号:
1625698 - 财政年份:2016
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
A Temporal and Spatial Analysis of Gender, Race, and Ethnic Disparities in the Probability of Incarceration
监禁概率中性别、种族和民族差异的时空分析
- 批准号:
0921369 - 财政年份:2009
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Community Variation in the Disposition of Criminal Cases: The Role of Social, Cultural, and Political Context
刑事案件处理中的社区差异:社会、文化和政治背景的作用
- 批准号:
0451848 - 财政年份:2005
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
相似海外基金
Development and Implementation of Participatory Urban Design Methodology for Introducing Climate Change Mitigation and Adaptation Measures
制定和实施参与式城市设计方法,引入气候变化减缓和适应措施
- 批准号:
23H01578 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
SCC-CIVIC-FA Track B Design for Community Resilience: Participatory Civic Technology to Close the Last-Mile Disaster Relief Gap in Puerto Rico
SCC-CIVIC-FA 社区复原力 B 轨设计:参与式公民技术缩小波多黎各最后一英里的救灾差距
- 批准号:
2321969 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Connecting Practitioners to Design: Methods and Tools for Live Participatory Design Fiction
合作研究:HCC:媒介:将从业者与设计联系起来:现场参与式设计小说的方法和工具
- 批准号:
2425383 - 财政年份:2023
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Exploring health vulnerabilities to climate change: a participatory approach to research design
探索气候变化对健康的脆弱性:研究设计的参与式方法
- 批准号:
460977 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Miscellaneous Programs
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2120829 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2121986 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
SCC-CIVIC-PG Track B Design for Community Resilience: Participatory Civic Technology to Close the Last-Mile Disaster Relief Gap in Puerto Rico
SCC-CIVIC-PG 社区复原力 B 轨设计:参与式公民技术缩小波多黎各最后一英里的救灾差距
- 批准号:
2228635 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
CAREER: Advancing Equity in Middle School Mathematics by Engaging Students and Families of Color in Participatory Design Research
职业:通过让有色人种学生和家庭参与参与式设计研究来促进中学数学的公平
- 批准号:
2144506 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: SAI: Participatory Design for Water Quality Monitoring of Highly Decentralized Water Infrastructure Systems
合作研究:EAGER:SAI:高度分散的水基础设施系统水质监测的参与式设计
- 批准号:
2121991 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant
SAI-P: Integrating Human Behavioral Uncertainty in Participatory Design of Infrastructure in Watersheds
SAI-P:将人类行为的不确定性纳入流域基础设施的参与式设计
- 批准号:
2228765 - 财政年份:2022
- 资助金额:
$ 54.99万 - 项目类别:
Standard Grant














{{item.name}}会员




