CAREER: A Sequential Learning Framework with Applications to Learning from Crowds

职业:顺序学习框架及其在群体学习中的应用

基本信息

  • 批准号:
    1845444
  • 负责人:
  • 金额:
    $ 49.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

While traditional machine learning usually deals with given static data, many online data are collected via a sequence of interactions with agents such as crowd labelers or customers. The motivating applications of the project include crowd labeling tasks (which is a powerful paradigm for utilizing human wisdom to collect data labels), sequential product recommendation, and online multi-product pricing. For all these applications, online learning and sequential decision-making are indispensable to each other. The objective of this project is to develop new sequential learning algorithms with rigorous theoretical guarantees. The developed framework will not only make fundamental technical contributions but also facilitate many important applications. For example, it will greatly improve the aggregated answers from crowd labelers with a significantly reduced cost. It can enhance the revenue of business while improving the customers' satisfaction by providing accurate recommendations. In addition, this project also facilitates the development of new courses on machine learning for business school students, which helps bring the knowledge from data science to future business leaders, and provides training to K-12 students, with an emphasis on those from underrepresented groups.This project strives to develop a unified learning and decision-making framework, which serves as an intellectual bridge connecting machine learning, stochastic optimization, and decision theory. In particular, there are three complementary research thrusts. The first thrust creates a suite of efficient algorithms that deal with complex task structures, such as ranking with transitivity structures or product recommendation with combinatorial structures, in a non-stationary environment. The algorithms will extend the bandit learning with finite independent arms into the setting with a complex correlation structure among potentially infinite number of arms. The second thrust seeks a cost-effective paradigm that either incorporates "optimal stopping" rule under a certain budget constraint or minimizes the sample complexity. The third thrust systematically evaluates the algorithms and theories on real problems coming from both crowdsourcing and other business-related applications. Moreover, since the computational efficiency and scalability is an important focus, the project will also advance the distributed statistical learning and stochastic optimization fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然传统的机器学习通常处理给定的静态数据,但许多在线数据是通过与代理(如人群标签或客户)的一系列交互收集的。该项目的激励应用包括人群标签任务(这是利用人类智慧收集数据标签的强大范例),顺序产品推荐和在线多产品定价。对于所有这些应用,在线学习和顺序决策是不可或缺的。该项目的目标是开发新的序列学习算法,具有严格的理论保证。所开发的框架不仅将做出基本的技术贡献,而且还将促进许多重要的应用。例如,它将极大地改善来自人群标签器的聚合答案,同时显著降低成本。它可以通过提供准确的建议来提高业务收入,同时提高客户的满意度。此外,该项目还为商学院学生开发了新的机器学习课程,有助于将数据科学的知识带给未来的商业领袖,并为K-12学生提供培训,重点是那些来自代表性不足的群体。该项目致力于开发一个统一的学习和决策框架,作为连接机器学习,随机优化和决策理论。特别是,有三个互补的研究重点。第一个推力创建了一套有效的算法,处理复杂的任务结构,如排名与传递性结构或产品推荐与组合结构,在一个非平稳的环境。该算法将具有有限独立臂的强盗学习扩展到具有潜在无限多个臂之间的复杂相关结构的设置。第二个推力寻求一个具有成本效益的范式,无论是采用“最佳停止”规则下,一定的预算约束或最小化样本的复杂性。第三个重点是系统地评估来自众包和其他商业相关应用的真实的问题的算法和理论。此外,由于计算效率和可扩展性是一个重要的焦点,该项目还将推进分布式统计学习和随机优化领域。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Dynamic Assortment Optimization in the Presence of Outlier Customers
存在异常客户时的稳健动态分类优化
  • DOI:
    10.1287/opre.2020.0281
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Krishnamurthy, Akshay;Wang, Yining
  • 通讯作者:
    Wang, Yining
Differential Privacy in Personalized Pricing with Nonparametric Demand Models
非参数需求模型个性化定价中的差异隐私
  • DOI:
    10.1287/opre.2022.2347
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Miao, Sentao;Wang, Yining
  • 通讯作者:
    Wang, Yining
Robust Dynamic Pricing with Demand Learning in the Presence of Outlier Customers
在存在异常客户的情况下通过需求学习进行稳健的动态定价
  • DOI:
    10.1287/opre.2022.2280
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Chen, Xi;Wang, Yining
  • 通讯作者:
    Wang, Yining
Bayesian Decision Process for Budget-efficient Crowdsourced Clustering
  • DOI:
    10.24963/ijcai.2020/283
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tight Regret Bounds for Infinite-armed Linear Contextual Bandits
无限武装线性上下文强盗的严格遗憾界限
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi Chen其他文献

simulations and application to daily streamflow processes
模拟及其在日常水流过程中的应用
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wen Wang;P. Gelder;J. Vrijling;Xi Chen
  • 通讯作者:
    Xi Chen
An Investigation to the Industry 4.0 Readiness of Manufacturing Enterprises: The Ongoing Problems of Information Systems Strategic Misalignment
制造企业工业4.0准备情况调查:信息系统战略错位的持续问题
Climate change and quality of health care: evidence from extreme heat
气候变化与医疗保健质量:极端高温的证据
  • DOI:
    10.1016/s0140-6736(19)32430-4
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yafei Si;Zhongliang Zhou;Min Su;Xi Chen
  • 通讯作者:
    Xi Chen
Research of optical rectification in surface layers of germanium
锗表层光学整流研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Li Zhang;Fangye Li;Shuai Wang;Qi Wang;Kairan Luan;Xi Chen;Xiuhuan Liu;Lingying Qiu;Zhanguo Chen;Jihong Zhao;Lixin Hou;Yanjun Gao;Gang Jia
  • 通讯作者:
    Gang Jia
Membrane gas dehydration in a pressure-electric coupled field
压力-电耦合场中的膜气体脱水
  • DOI:
    10.1016/j.memsci.2015.07.019
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Xianshe Feng;Yanfen Li;Yufeng Zhang;Xi Chen
  • 通讯作者:
    Xi Chen

Xi Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi Chen', 18)}}的其他基金

A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
  • 批准号:
    2344305
  • 财政年份:
    2024
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Water-responsive, Shape-shifting Supramolecular Protein Assemblies
合作研究:水响应、变形超分子蛋白质组装体
  • 批准号:
    2304959
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Programmable Negative Water Adsorption of Bioinspired Hygroscopic Materials
职业:仿生吸湿材料的可编程负吸水
  • 批准号:
    2238129
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Understanding the Size Effects on Spin-mediated Thermal Transport in Nanostructured Quantum Magnets
职业:了解纳米结构量子磁体中自旋介导的热传输的尺寸效应
  • 批准号:
    2144328
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Continuing Grant
CAREER: Model-Free Input Screening and Sensitivity Analysis in Simulation Metamodeling
职业:仿真元建模中的无模型输入筛选和敏感性分析
  • 批准号:
    1846663
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
S&AS: INT: Traffic Deconfliction for Smart and Autonomous Unmanned Aircraft Systems in Congested Environments
S
  • 批准号:
    1849300
  • 财政年份:
    2019
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
SusChEM: Chemoenzymatic Methods for Efficient Synthesis of Glycolipids
SusChEM:高效合成糖脂的化学酶法
  • 批准号:
    1300449
  • 财政年份:
    2013
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
CAREER: Bridging Game Theory, Economics and Computer Science: Equilibria, Fixed Points, and Beyond
职业:连接博弈论、经济学和计算机科学:均衡、不动点及其他
  • 批准号:
    1149257
  • 财政年份:
    2012
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Continuing Grant
Chemoenzymatic methods for automated carbohydrate synthesis
自动碳水化合物合成的化学酶法
  • 批准号:
    1012511
  • 财政年份:
    2010
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant

相似海外基金

Sequential Decision Making with Imperfect Information: Machine Learning and Information Theory
不完美信息的顺序决策:机器学习和信息论
  • 批准号:
    23K17547
  • 财政年份:
    2023
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
  • 批准号:
    RGPIN-2018-05476
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Discovery Grants Program - Individual
Reinforcement Learning for Sequential Decision Making in FPGA CAD
FPGA CAD 中顺序决策的强化学习
  • 批准号:
    571824-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152717
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Equations Motivated Multi-Agent Sequential Deep Learning: Algorithms, Theory, and Validation
协作研究:微分方程驱动的多智能体序列深度学习:算法、理论和验证
  • 批准号:
    2152762
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Standard Grant
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
  • 批准号:
    573681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Reinforcement Learning for Sequential Decision Making in FPGA CAD
FPGA CAD 中顺序决策的强化学习
  • 批准号:
    571753-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 49.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Understanding hierarchical statistical learning of sequential perception with dynamic multiple timescale models
使用动态多时间尺度模型理解顺序感知的分层统计学习
  • 批准号:
    21KK0181
  • 财政年份:
    2021
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Sequential diagnosis by deep learning electronic health record data
通过深度学习电子病历数据进行序列诊断
  • 批准号:
    561876-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 49.78万
  • 项目类别:
    University Undergraduate Student Research Awards
Machine learning methodology for sequential decision support from large-scale longitudinal data
从大规模纵向数据中支持顺序决策的机器学习方法
  • 批准号:
    RGPIN-2018-05476
  • 财政年份:
    2021
  • 资助金额:
    $ 49.78万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了