Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
基本信息
- 批准号:2400301
- 负责人:
- 金额:$ 31.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-11-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The field of observational gravitational-wave astronomy began with a "bang" on 14 September 2015 with the detection of gravitational waves from the merger of two inspiraling and colliding black holes. This detection opened a window into the "dark side" of the universe, providing the means to observe astrophysical objects and events that would otherwise be impossible to see with standard optical telescopes. To date, approximately 100 "loud" events, from relatively nearby black holes and/or neutron stars, have been detected by several large-scale gravitational-wave detectors including NSF's LIGO. But the combined signal from the population of more distant pairs of black holes has yet to be detected. This project is designed precisely to target this signal, which (using the analogy of hearing) would sound like popcorn popping. In other words, the signal consists of weak bursts of gravitational waves of short duration (~seconds) separated by periods (~a few minutes) of relative silence. The data analysis tools developed as part of this project will explicitly take into account the popcorn-like nature of the signal, leading to a more sensitive search and a possible first detection of this type of signal within the next few years. The project will provide support and training in data analysis to one or two graduate students, thus adding to the growing community of researchers in this emerging field. The computational and data analysis skills that the students will acquire are transferable outside the field of gravitational-wave astronomy, making the students marketable in a variety of disciplines--potentially as future university professors or outside the university setting in research labs or high-tech companies.The proposed project consists of three main activities, which increase in scope and complexity over the period of the proposal: (i) First, to provide a "proof-of-principle" demonstration of a stochastic-signal-based search for popcorn-like (intermittent) gravitational-wave signals in the context of a set of relatively simple toy models. (ii) Second, to extend the data analysis pipeline developed in part (i) to run on more realistic data sets, thus stress-testing the proposed search. (iii) Third, to run a production version of the pipeline developed in part (ii) on the Advanced LIGO-Virgo-KAGRA data taken during the 4th observation run O4, which will start near the end of 2022 / beginning of 2023. The proposed stochastic-signal-based search has the potential to advance the field of gravitational-wave astronomy by being the first search to detect the signal from mergers of pairs of stellar-mass black holes throughout the Universe. This is possible because the search takes into account the intermittent nature of the signal, which should lead to a reduced time-to-detection by increasing the signal-to-noise ratio of the recovered signal amplitude compared to the current search, which assumes that the signal is "on" all the time. In addition, by using a stochastic-signal model, the search is both more robust to the type of source and less computationally demanding than a deterministic-signal-based search, which is tuned to the specific waveforms associated with binary black hole mergers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
观测引力波天文学领域始于2015年9月14日探测到的两个激发和碰撞的黑洞合并产生的引力波。这一探测打开了一扇通往宇宙“黑暗面”的窗户,提供了观察天体物理物体和事件的手段,而这些物体和事件本来是不可能用标准光学望远镜看到的。到目前为止,包括NSF的LIGO在内的几个大型引力波探测器已经探测到了大约100个来自相对较近的黑洞和/或中子星的“响亮”事件。但是,来自更远的黑洞对的组合信号还没有被探测到。这个项目正是针对这种信号而设计的,这种信号(用听觉类比)听起来像爆米花一样。换句话说,信号由持续时间短(~秒)的引力波微弱爆发组成,中间隔着相对静默的周期(~几分钟)。作为该项目的一部分开发的数据分析工具将明确考虑到信号的爆米花性质,从而导致更灵敏的搜索,并可能在未来几年内首次检测到这类信号。该项目将为一到两名研究生提供数据分析方面的支持和培训,从而增加这一新兴领域日益增长的研究人员群体。学生将获得的计算和数据分析技能可以移植到引力波天文学领域之外,使学生在各种学科中都有市场--可能是未来的大学教授,也可能是大学以外的研究实验室或高科技公司。拟议的项目包括三个主要活动,在提案期间范围和复杂性都有所增加:(I)首先,在一组相对简单的玩具模型的背景下,提供基于随机信号的爆米花状(间歇性)引力波信号搜索的“原理证明”演示。(2)第二,扩大在第(1)部分中开发的数据分析管道,使之在更切合实际的数据集上运行,从而对拟议的搜索进行压力测试。(3)第三,根据在即将于2022年底/2023年初开始的第4次观测运行O4期间采集的高级LIGO-Virgo-KAGRA数据,运行在第(2)部分中开发的管道的生产版本。提出的基于随机信号的搜索有可能推动引力波天文学领域的发展,因为它是第一次探测到整个宇宙中两对恒星质量黑洞合并产生的信号。这是可能的,因为搜索考虑了信号的间歇性,与当前搜索相比,这应该通过增加恢复的信号幅度的信噪比来减少检测时间,当前搜索假设信号一直处于“开”状态。此外,通过使用随机信号模型,与基于确定信号的搜索相比,该搜索对源的类型更稳健,并且计算要求更低,后者针对与双星黑洞合并相关的特定波形进行调整。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A stochastic search for intermittent gravitational-wave backgrounds
- DOI:10.1103/physrevd.107.103026
- 发表时间:2023-01
- 期刊:
- 影响因子:5
- 作者:J. Lawrence;K. Turbang;A. Matas;A. Renzini;N. van Remortel;J. Romano
- 通讯作者:J. Lawrence;K. Turbang;A. Matas;A. Renzini;N. van Remortel;J. Romano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Romano其他文献
Routine Culturing for Legionella in the Hospital Environment May Be a Good Idea: A Three-Hospital Prospective Study
- DOI:
10.1097/00000441-198708000-00007 - 发表时间:
1987-08-01 - 期刊:
- 影响因子:
- 作者:
Victor L. Yu;Thomas R. Beam;Robert M. Lumish;Richard M. Vickers;Jean Fleming;Carolyn McDermott;Joseph Romano - 通讯作者:
Joseph Romano
A clinical model to predict postoperative improvement in sub-domains of the modified Japanese Orthopedic Association score for degenerative cervical myelopathy
预测退行性脊髓型颈椎病改良日本骨科协会评分子领域术后改善的临床模型
- DOI:
10.1007/s00586-023-07607-6 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Byron F. Stephens;L. McKeithan;W. Waddell;Joseph Romano;Anthony M. Steinle;Wilson E. Vaughan;J. Pennings;H. Nian;Inamullah Khan;M. Bydon;S. Zuckerman;Kristin R. Archer;A. Abtahi - 通讯作者:
A. Abtahi
Multiple dosage forms of the NNRTI microbicide dapivirine: product development and evaluation
- DOI:
10.1186/1742-4690-3-s1-s54 - 发表时间:
2006-12-21 - 期刊:
- 影响因子:3.900
- 作者:
Joseph Romano - 通讯作者:
Joseph Romano
189. Radiographic predictors of mortality following atlanto-occipital dissociation
- DOI:
10.1016/j.spinee.2022.06.208 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Rishabh Gupta;Anthony Steinle;Joseph Romano;Jordan Bley;Hani Chanbour;Scott L. Zuckerman;Amir M. Abtahi;Byron F. Stephens - 通讯作者:
Byron F. Stephens
Didanosine but not high doses of hydroxyurea rescue pigtail macaque from a lethal dose of SIV(smmpbj14).
去羟肌苷而非高剂量的羟基脲可将猪尾猕猴从致死剂量的 SIV (smmpbj14) 中拯救出来。
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:1.5
- 作者:
Franco Lori;Robert C. Gallo;Andrei G. Malykh;Andrea Cara;Joseph Romano;Phillip D. Markham;Genoveffa Franchini - 通讯作者:
Genoveffa Franchini
Joseph Romano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Romano', 18)}}的其他基金
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2207270 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
Computer-intensive Inference with Applications to Social Sciences
计算机密集型推理及其在社会科学中的应用
- 批准号:
1949845 - 财政年份:2020
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Collaborative Research: Randomization inference for contemporary problems in statistics
合作研究:当代统计学问题的随机推理
- 批准号:
1307973 - 财政年份:2013
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Support of LIGO Data Analysis Activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
1205585 - 财政年份:2012
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
Multiple Problems in Multiple Testing and Simultaneous Inference
多重测试同时推理的多个问题
- 批准号:
1007732 - 财政年份:2010
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
Support of LIGO data analysis activities at the University of Texas at Brownsville
支持德克萨斯大学布朗斯维尔分校的 LIGO 数据分析活动
- 批准号:
0855371 - 财政年份:2009
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
New Methodology for Multiple Testing and Simultaneous Inference
多重测试和同时推理的新方法
- 批准号:
0707085 - 财政年份:2007
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
Theory and Methods for Multiple Testing and Inference
多重测试和推理的理论和方法
- 批准号:
0404979 - 财政年份:2004
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Approximate and Exact Inference Via Computer-Intensive Methods
通过计算机密集型方法进行近似和精确推理
- 批准号:
0103926 - 财政年份:2001
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Collaboration to Integrate Research and Education between University of Texas, Brownsville and LIGO
德克萨斯大学布朗斯维尔分校与 LIGO 合作整合研究和教育
- 批准号:
9981795 - 财政年份:1999
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
相似国自然基金
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
- 批准号:11902320
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Proposal for A Stochastic-Signal-Model-Based Search for Intermittent Gravitational-Wave Backgrounds
基于随机信号模型的间歇引力波背景搜索提案
- 批准号:
2207270 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Continuing Grant
Applications of Stochastic Machine Learning and Statistical Signal Processing Approaches to Automatic Music Transcription and Visualisation
随机机器学习和统计信号处理方法在自动音乐转录和可视化中的应用
- 批准号:
2738835 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Studentship
A study on time division multiplexing of stochastic resonance phenomena and its application to biological signal detection
随机共振现象时分复用研究及其在生物信号检测中的应用
- 批准号:
22K18176 - 财政年份:2022
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Detecting feeble signal utilizing stochastic resonance in hydrogen-bonded molecular conductors and its application
利用氢键分子导体中的随机共振检测微弱信号及其应用
- 批准号:
19K22123 - 财政年份:2019
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Stochastic non-decomposition based tensor restoration and its application to image and signal processing
基于随机非分解的张量恢复及其在图像和信号处理中的应用
- 批准号:
19K04377 - 财政年份:2019
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Signal transfer by stochastic resonance in cooperation with proton-fluctuation and enhancement of charge-transfer in molecular materials as biological model system
作为生物模型系统,通过随机共振与质子涨落配合进行信号转移并增强分子材料中的电荷转移
- 批准号:
18K18725 - 财政年份:2018
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric methods for dimensionality reductions of stochastic (partial) differential equations with applications to signal processing and finance
随机(偏)微分方程降维的几何方法及其在信号处理和金融中的应用
- 批准号:
1943803 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
Studentship
CIF: Small: High-Dimensional Analysis of Stochastic Iterative Algorithms for Signal Estimation
CIF:小:信号估计随机迭代算法的高维分析
- 批准号:
1718698 - 财政年份:2017
- 资助金额:
$ 31.14万 - 项目类别:
Standard Grant
Optimization modeling of coordinated traffic signal control and its stochastic extension: Network modeling approach
协调交通信号控制的优化建模及其随机扩展:网络建模方法
- 批准号:
16K18163 - 财政年份:2016
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study of stochastic hierarchical convex optimization algorithms and their applications to signal recovery
随机分层凸优化算法及其在信号恢复中的应用研究
- 批准号:
15H06197 - 财政年份:2015
- 资助金额:
$ 31.14万 - 项目类别:
Grant-in-Aid for Research Activity Start-up