CAREER: Advancing the Bioinformatic Infrastructure and Methodology for Single-cell RNA Sequencing

职业:推进单细胞 RNA 测序的生物信息学基础设施和方法

基本信息

  • 批准号:
    1846216
  • 负责人:
  • 金额:
    $ 59.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The recent introduction of single-cell RNA-sequencing (scRNA-seq) has revolutionized research in the biological sciences by revealing the individual genome-wide gene expression response levels, i.e., transcriptomes, cell by cell. For the first time, researchers are able to evaluate and compare the transcriptomes of individual cells, for instance from two cells in the same tissue but different microenvironments, or two neurons in different developmental states, of to compare a normal cell and one that is undergoing a degenerative process. However, the technology still has limitations that restrict its quantitative power. Researchers face an experimental trade-off between exploring either fewer cells for higher accuracy or a greater number of cells for a broader survey of gene expression. Further, scRNA-seq technology is still so new that a variety of experimental protocols exist that are subject to different bias and errors, presenting a hurdle for data validation, cross-referencing between labs, and normalization and integration of data from public repositories. This project will enhance biological research across the many disciplines using this type of assay, by advancing scRNA-seq data analysis and providing new critical tools for investigating molecular mechanisms underlying particular states, including disease states like cancers and neurological disorders. As scRNA-seq technology is still new, the project plans to be on the frontier of education and method development, disseminating information to all levels of trainees in statistics and biology. Teaching activities will capitalize on the excitement of individual cell analysis, through scRNA-seq data, to heighten undergraduate students' understanding of statistical analysis and to attract underrepresented minority students to study quantitative sciences.This project will establish a necessary computational infrastructure for the design of experiments and analysis of data that arise from scRNA-seq assays. A statistical and computational simulator will be developed to enable researchers to design more effective scRNA-seq experiments at a significantly lower cost. Another goal is to develop an scRNA-seq database that organizes individual cell transcriptomes in a hierarchical taxonomy of cell types, providing a benchmark resource for computational method development. Assisted by the simulator and the database, a new suite of statistical and computational methods will be developed to increase the resolution and accuracy of scRNA-seq data analysis. Those methods will serve as effective bioinformatic tools for researchers such that they may quantify genome-wide transcripts in individual cells, identify differentially expressed genes at a cell-subtype resolution, and compare the transcriptomes of individual human and mouse cells. The infrastructure and methods developed in this project will enable and expedite scientific discoveries from scRNA-seq data and will be applicable to both experimentalists and computationalists in the scRNA-seq field. Results of this project, including research papers, software packages, and video tutorials, will be made available at http://jsb.ucla.edu.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最近引入的单细胞RNA测序(scRNA-seq)通过揭示个体全基因组基因表达反应水平,即,一个细胞接一个细胞的转录组。研究人员第一次能够评估和比较单个细胞的转录组,例如来自相同组织但不同微环境的两个细胞,或不同发育状态的两个神经元,或比较正常细胞和正在经历退化过程的细胞。然而,该技术仍然存在限制其量化能力的局限性。研究人员面临着一个实验权衡,要么探索更少的细胞以获得更高的准确性,要么探索更多的细胞以进行更广泛的基因表达调查。此外,scRNA-seq技术仍然是如此新,以至于存在各种实验方案,这些方案会受到不同的偏见和错误的影响,这对数据验证,实验室之间的交叉引用以及来自公共存储库的数据的标准化和整合构成了障碍。该项目将通过推进scRNA-seq数据分析并提供新的关键工具来研究特定状态下的分子机制,包括癌症和神经系统疾病等疾病状态,从而加强使用这种类型的检测方法进行的许多学科的生物学研究。由于scRNA-seq技术仍然是新的,该项目计划处于教育和方法开发的前沿,向统计学和生物学的各级受训者传播信息。通过scRNA-seq数据,利用细胞个体分析带来的兴奋感,提高本科生对统计分析的理解,吸引少数民族学生学习定量科学。本项目将为scRNA-seq分析的实验设计和数据分析建立必要的计算基础设施。将开发一个统计和计算模拟器,使研究人员能够以更低的成本设计更有效的scRNA-seq实验。另一个目标是开发一个scRNA-seq数据库,该数据库以细胞类型的分层分类法组织单个细胞转录组,为计算方法开发提供基准资源。在模拟器和数据库的帮助下,将开发一套新的统计和计算方法,以提高scRNA-seq数据分析的分辨率和准确性。这些方法将作为研究人员的有效生物信息学工具,使他们可以量化单个细胞中的全基因组转录本,以细胞亚型分辨率识别差异表达的基因,并比较单个人类和小鼠细胞的转录组。该项目中开发的基础设施和方法将使scRNA-seq数据能够加速科学发现,并将适用于scRNA-seq领域的实验学家和计算学家。该项目的成果,包括研究论文、软件包和视频教程,将在www.example.com上提供http://jsb.ucla.edu.This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulating Single-Cell Gene Expression Count Data with Preserved Gene Correlations by scDesign2
DORGE: Discovery of Oncogenes and tumoR suppressor genes using Genetic and Epigenetic features.
  • DOI:
    10.1126/sciadv.aba6784
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    13.6
  • 作者:
    Lyu J;Li JJ;Su J;Peng F;Chen YE;Ge X;Li W
  • 通讯作者:
    Li W
Cellular Heterogeneity-Adjusted cLonal Methylation (CHALM) improves prediction of gene expression.
  • DOI:
    10.1038/s41467-020-20492-7
  • 发表时间:
    2021-01-15
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xu J;Shi J;Cui X;Cui Y;Li JJ;Goel A;Chen X;Issa JP;Su J;Li W
  • 通讯作者:
    Li W
Clipper: p-value-free FDR control on high-throughput data from two conditions.
  • DOI:
    10.1186/s13059-021-02506-9
  • 发表时间:
    2021-10-11
  • 期刊:
  • 影响因子:
    12.3
  • 作者:
    Ge X;Chen YE;Song D;McDermott M;Woyshner K;Manousopoulou A;Wang N;Li W;Wang LD;Li JJ
  • 通讯作者:
    Li JJ
The concurrence of DNA methylation and demethylation is associated with transcription regulation.
  • DOI:
    10.1038/s41467-021-25521-7
  • 发表时间:
    2021-09-06
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Shi J;Xu J;Chen YE;Li JS;Cui Y;Shen L;Li JJ;Li W
  • 通讯作者:
    Li W
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyi Jessica Li其他文献

Systematic evaluation of methylation-based cell type deconvolution methods for plasma cell-free DNA
  • DOI:
    10.1186/s13059-024-03456-8
  • 发表时间:
    2024-12-19
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Tongyue Sun;Jinqi Yuan;Yacheng Zhu;Jingqi Li;Shen Yang;Junpeng Zhou;Xinzhou Ge;Susu Qu;Wei Li;Jingyi Jessica Li;Yumei Li
  • 通讯作者:
    Yumei Li
Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma
内在凋亡机制的综合分子和功能表征确定了神经胶质瘤中的治疗弱点
  • DOI:
    10.1038/s41467-024-54138-9
  • 发表时间:
    2024-11-21
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Elizabeth G. Fernandez;Wilson X. Mai;Kai Song;Nicholas A. Bayley;Jiyoon Kim;Henan Zhu;Marissa Pioso;Pauline Young;Cassidy L. Andrasz;Dimitri Cadet;Linda M. Liau;Gang Li;William H. Yong;Fausto J. Rodriguez;Scott J. Dixon;Andrew J. Souers;Jingyi Jessica Li;Thomas G. Graeber;Timothy F. Cloughesy;David A. Nathanson
  • 通讯作者:
    David A. Nathanson
Information-theoretic Classification Accuracy: A Data-driven Criterion to Combining Ambiguous Outcome Labels in Multi-class Classification
信息论分类准确性:在多类分类中组合模糊结果标签的数据驱动标准
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chihao Zhang;Y. Chen;Shihua Zhang;Jingyi Jessica Li
  • 通讯作者:
    Jingyi Jessica Li
Publisher Correction: scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured
  • DOI:
    10.1186/s13059-021-02394-z
  • 发表时间:
    2021-06-09
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Tianyi Sun;Dongyuan Song;Wei Vivian Li;Jingyi Jessica Li
  • 通讯作者:
    Jingyi Jessica Li
A BOOTSTRAP LASSO + PARTIAL RIDGE METHOD TO CONSTRUCT CONFIDENCE INTERVALS FOR PARAMETERS IN HIGH-DIMENSIONAL SPARSE LINEAR MODELS
一种构建高维稀疏线性模型参数置信区间的Bootstrap Lasso偏岭法
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanzhong Liu;Xin Xu;Jingyi Jessica Li
  • 通讯作者:
    Jingyi Jessica Li

Jingyi Jessica Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyi Jessica Li', 18)}}的其他基金

Collaborative Research: Development of Classification Theory and Methods for Objective Asymmetry, Sample Size Limitation, Labeling Ambiguity, and Feature Importance
合作研究:针对客观不对称性、样本量限制、标签歧义和特征重要性的分类理论和方法的发展
  • 批准号:
    2113754
  • 财政年份:
    2021
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
  • 批准号:
    1557727
  • 财政年份:
    2015
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant

相似海外基金

Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Research Grant
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Discovery Projects
Governing Sustainable Futures: Advancing the use of Participatory Mechanisms for addressing Place-based Contestations of Sustainable Living
治理可持续未来:推进利用参与机制来解决基于地方的可持续生活竞赛
  • 批准号:
    ES/Z502789/1
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Research Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Green Chemistry: Advancing Equity, Relevance, and Environmental Justice
HSI 实施和评估项目:绿色化学:促进公平、相关性和环境正义
  • 批准号:
    2345355
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Continuing Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Cooperative Agreement
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
  • 批准号:
    2406511
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
  • 批准号:
    2412406
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Standard Grant
Photonic-Enabled THz Duplex Metasurface: Advancing Communication and Sensing
光子太赫兹双工超表面:推进通信和传感
  • 批准号:
    24K17324
  • 财政年份:
    2024
  • 资助金额:
    $ 59.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了