QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
基本信息
- 批准号:1557727
- 负责人:
- 金额:$ 3.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the growing popularity of mobile phone technology, new opportunities have arisen for real-time adaptive medical intervention. The simultaneous growth of multiple "big data" sources (e.g., mobile health data, electronic health records, lab test results, genomic data) allows for the development of personalized recommendations. This award supports initiation of a collaborative research project that will generate a new mathematical model for changes in subjective pain over time in patients with chronic conditions. The model will be combined with statistical techniques to ultimately obtain optimized, continuously-updated treatment plans balancing competing demands of pain reduction and medication minimization. Those resulting personalized treatment plans will be incorporated into a currently active pilot study on mobile intervention in patients living with chronic pain due to sickle cell disease (SCD). Since nearly a quarter of patient visits to the emergency room are for conditions that could have been managed as outpatients, it is crucial to improve mobile health technologies to allow these patients to quickly recognize and receive appropriate health care information. There currently is no standard algorithm or analytical method for real-time adaptive treatment recommendations for chronic conditions like pain. Furthermore, current state-of-the-art methods have difficulty in handling continuous-time decision optimization using big data. The proposed model will consist of a dynamical systems approach using differential equations to forecast future pain levels, as well as a statistical approach tying system parameters to patient data (including reported pain levels, medication history, personal characteristics and other health records). A third key component will be the development and pilot study of a new control and optimization strategy to balance the competing demands of pain reduction and drug dosage minimization. This award is supported by the National Institutes of Health Big Data to Knowledge (BD2K) Initiative in partnership with the National Science Foundation Division of Mathematical Sciences.
随着移动电话技术的日益普及,实时适应性医疗干预出现了新的机会。多种“大数据”来源(例如,移动健康数据、电子健康记录、实验室测试结果、基因组数据)的同时增长,使制定个性化建议成为可能。该奖项支持启动一个合作研究项目,该项目将生成一个新的数学模型,用于慢性疾病患者主观疼痛随时间的变化。该模型将与统计技术相结合,最终获得优化的、不断更新的治疗计划,平衡疼痛减轻和药物最小化的竞争需求。这些产生的个性化治疗计划将纳入目前正在进行的针对镰状细胞病(SCD)慢性疼痛患者移动干预的试点研究。由于到急诊室就诊的患者中有近四分之一是由于本可以作为门诊患者进行治疗的疾病,因此必须改进移动医疗技术,使这些患者能够快速识别和接收适当的医疗保健信息。目前,对于疼痛等慢性疾病的实时适应性治疗建议,还没有标准的算法或分析方法。此外,目前最先进的方法在处理使用大数据的连续时间决策优化方面存在困难。提出的模型将包括使用微分方程预测未来疼痛程度的动态系统方法,以及将系统参数与患者数据(包括报告的疼痛程度、用药史、个人特征和其他健康记录)联系起来的统计方法。第三个关键组成部分将是开发和试点研究一种新的控制和优化策略,以平衡疼痛减轻和药物剂量最小化的竞争需求。该奖项由美国国立卫生研究院大数据到知识(BD2K)计划与美国国家科学基金会数学科学部合作支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingyi Jessica Li其他文献
Systematic evaluation of methylation-based cell type deconvolution methods for plasma cell-free DNA
- DOI:
10.1186/s13059-024-03456-8 - 发表时间:
2024-12-19 - 期刊:
- 影响因子:9.400
- 作者:
Tongyue Sun;Jinqi Yuan;Yacheng Zhu;Jingqi Li;Shen Yang;Junpeng Zhou;Xinzhou Ge;Susu Qu;Wei Li;Jingyi Jessica Li;Yumei Li - 通讯作者:
Yumei Li
Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma
内在凋亡机制的综合分子和功能表征确定了神经胶质瘤中的治疗弱点
- DOI:
10.1038/s41467-024-54138-9 - 发表时间:
2024-11-21 - 期刊:
- 影响因子:15.700
- 作者:
Elizabeth G. Fernandez;Wilson X. Mai;Kai Song;Nicholas A. Bayley;Jiyoon Kim;Henan Zhu;Marissa Pioso;Pauline Young;Cassidy L. Andrasz;Dimitri Cadet;Linda M. Liau;Gang Li;William H. Yong;Fausto J. Rodriguez;Scott J. Dixon;Andrew J. Souers;Jingyi Jessica Li;Thomas G. Graeber;Timothy F. Cloughesy;David A. Nathanson - 通讯作者:
David A. Nathanson
Information-theoretic Classification Accuracy: A Data-driven Criterion to Combining Ambiguous Outcome Labels in Multi-class Classification
信息论分类准确性:在多类分类中组合模糊结果标签的数据驱动标准
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Chihao Zhang;Y. Chen;Shihua Zhang;Jingyi Jessica Li - 通讯作者:
Jingyi Jessica Li
Publisher Correction: scDesign2: a transparent simulator that generates high-fidelity single-cell gene expression count data with gene correlations captured
- DOI:
10.1186/s13059-021-02394-z - 发表时间:
2021-06-09 - 期刊:
- 影响因子:9.400
- 作者:
Tianyi Sun;Dongyuan Song;Wei Vivian Li;Jingyi Jessica Li - 通讯作者:
Jingyi Jessica Li
A BOOTSTRAP LASSO + PARTIAL RIDGE METHOD TO CONSTRUCT CONFIDENCE INTERVALS FOR PARAMETERS IN HIGH-DIMENSIONAL SPARSE LINEAR MODELS
一种构建高维稀疏线性模型参数置信区间的Bootstrap Lasso偏岭法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hanzhong Liu;Xin Xu;Jingyi Jessica Li - 通讯作者:
Jingyi Jessica Li
Jingyi Jessica Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingyi Jessica Li', 18)}}的其他基金
Collaborative Research: Development of Classification Theory and Methods for Objective Asymmetry, Sample Size Limitation, Labeling Ambiguity, and Feature Importance
合作研究:针对客观不对称性、样本量限制、标签歧义和特征重要性的分类理论和方法的发展
- 批准号:
2113754 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
CAREER: Advancing the Bioinformatic Infrastructure and Methodology for Single-cell RNA Sequencing
职业:推进单细胞 RNA 测序的生物信息学基础设施和方法
- 批准号:
1846216 - 财政年份:2019
- 资助金额:
$ 3.38万 - 项目类别:
Continuing Grant
相似海外基金
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664858 - 财政年份:2017
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Quantifying Morphologic Phenotypes in Prostate Cancer - Developing Topological Descriptors for Machine Learning Algorithms
QuBBD:合作研究:量化前列腺癌的形态表型 - 开发机器学习算法的拓扑描述符
- 批准号:
1664848 - 财政年份:2017
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Precision medicine and the management of infectious diseases
QuBBD:合作研究:精准医学和传染病管理
- 批准号:
1557742 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557593 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Interactive Ensemble clustering for mixed data with application to mood disorders
QuBBD:协作研究:混合数据的交互式集成聚类及其在情绪障碍中的应用
- 批准号:
1557642 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Towards Automated Quantitative Prostate Cancer Diagnosis
QuBBD:合作研究:实现前列腺癌自动化定量诊断
- 批准号:
1557750 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Personalized Predictive Neuromarkers for Stress-Related Health Risks
QuBBD:合作研究:压力相关健康风险的个性化预测神经标志物
- 批准号:
1557572 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557559 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: SMART -- Spatial-Nonspatial Multidimensional Adaptive Radiotherapy Treatment
QuBBD:合作研究:SMART——空间-非空间多维适应性放射治疗
- 批准号:
1557679 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant
QuBBD: Collaborative Research: Advancing mHealth using Big Data Analytics: Statistical and Dynamical Systems Modeling of Real-Time Adaptive m-Intervention for Pain
QuBBD:协作研究:利用大数据分析推进移动医疗:疼痛实时自适应移动干预的统计和动态系统建模
- 批准号:
1557712 - 财政年份:2015
- 资助金额:
$ 3.38万 - 项目类别:
Standard Grant














{{item.name}}会员




