CAREER: Statistical Inference Under Information Constraints: Efficient Algorithms and Fundamental Limits
职业:信息约束下的统计推断:高效算法和基本限制
基本信息
- 批准号:1846300
- 负责人:
- 金额:$ 55.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Data science and machine learning systems have to optimize constraints on the availability of data, computation time, memory for storage, and privacy concerns. For example, while performing web search on mobile devices, one would like the applications to be small in size, communicate as little data as possible, and leak as little about the user as possible. These constraints are often at odds with each other. A system that provides strong privacy guarantees might require more data and computation, and a system that uses little data might require more computation. A fundamental understanding of the limits and trade-offs between constrained resources such as samples, time, memory, communication, and privacy is critical for tackling the many challenges in data science that lay ahead. In spite of many success stories of data science, these trade-offs are poorly understood even in some of the simplest settings. This project aims to establish the fundamental trade-offs between these resources, as well as design efficient schemes that achieve them. The project outcomes can help design faster, communication-frugal, privacy-preserving, and space-efficient learning systems. The project seeks to involve the participation of a diverse group of researchers in this project through outreach activities that target undergraduate students and under-represented communities.The investigator will formulate and study fundamental statistical inference tasks such as distribution estimation, hypothesis testing, and distribution property estimation under the information constraints mentioned above. A particular direction of interest is the impact of the availability of shared randomness on the other constraints for distributed machine learning systems. While the role of randomness has been studied in problems in communication complexity, its role in machine learning systems is often overlooked. The project will integrate ideas from computer science, information theory, machine learning, and statistics, seeking to bridge researchers from these communities. All findings of this project will be disseminated through publications, and will be made publicly available on the investigator's website.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据科学和机器学习系统必须优化对数据可用性、计算时间、存储内存和隐私问题的限制。例如,当在移动设备上执行网络搜索时,人们希望应用程序尺寸较小、通信的数据尽可能少,并且泄露的用户信息也尽可能少。这些限制常常相互矛盾。提供强大隐私保证的系统可能需要更多的数据和计算,而使用很少数据的系统可能需要更多的计算。对样本、时间、内存、通信和隐私等受限资源之间的限制和权衡有一个基本的了解,对于解决数据科学中面临的许多挑战至关重要。尽管数据科学有许多成功的案例,但即使在一些最简单的环境中,人们对这些权衡也知之甚少。该项目旨在建立这些资源之间的基本权衡,并设计实现这些资源的有效方案。该项目成果可以帮助设计更快、通信节约、保护隐私和节省空间的学习系统。该项目旨在通过针对本科生和代表性不足的社区的推广活动,让多元化的研究人员参与到该项目中。研究者将在上述信息约束下制定和研究基本统计推理任务,例如分布估计、假设检验和分布属性估计。一个特别感兴趣的方向是共享随机性的可用性对分布式机器学习系统的其他约束的影响。虽然随机性在通信复杂性问题中的作用已经被研究,但它在机器学习系统中的作用经常被忽视。该项目将整合计算机科学、信息论、机器学习和统计学的思想,寻求为这些社区的研究人员架起桥梁。该项目的所有研究结果将通过出版物传播,并将在研究者的网站上公开提供。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust Estimation for Random Graphs
- DOI:
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Jayadev Acharya;Ayush Jain;Gautam Kamath;A. Suresh;Huanyu Zhang
- 通讯作者:Jayadev Acharya;Ayush Jain;Gautam Kamath;A. Suresh;Huanyu Zhang
Estimating Sparse Discrete Distributions Under Privacy and Communication Constraints
估计隐私和通信约束下的稀疏离散分布
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Acharya, Jayadev;Kairouz, Peter;Liu, Yuhan;Sun, Ziteng
- 通讯作者:Sun, Ziteng
Sample Complexity of Distinguishing Cause from Effect
区分原因和结果的复杂性示例
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Acharya, Jayadev;Bhadane, Sourbh;Bhattacharyya, Arnab;Kandasamy, Saravanan;Sun, Ziteng
- 通讯作者:Sun, Ziteng
Interactive Inference Under Information Constraints
- DOI:10.1109/tit.2021.3123905
- 发表时间:2020-07
- 期刊:
- 影响因子:2.5
- 作者:Jayadev Acharya;C. Canonne;Yuhan Liu;Ziteng Sun;Himanshu Tyagi
- 通讯作者:Jayadev Acharya;C. Canonne;Yuhan Liu;Ziteng Sun;Himanshu Tyagi
Inference Under Information Constraints I: Lower Bounds From Chi-Square Contraction
- DOI:10.1109/tit.2020.3028440
- 发表时间:2018-12
- 期刊:
- 影响因子:2.5
- 作者:Jayadev Acharya;C. Canonne;Himanshu Tyagi
- 通讯作者:Jayadev Acharya;C. Canonne;Himanshu Tyagi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayadev Acharya其他文献
Sorting with adversarial comparators and application to density estimation
使用对抗性比较器进行排序及其在密度估计中的应用
- DOI:
10.1109/isit.2014.6875120 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Ashkan Jafarpour;A. Orlitsky;A. Suresh - 通讯作者:
A. Suresh
Adaptive estimation in weighted group testing
加权组测试中的自适应估计
- DOI:
10.1109/isit.2015.7282829 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;C. Canonne;Gautam Kamath - 通讯作者:
Gautam Kamath
Proceedings of the 33rd International Conference on Machine Learning (ICML 2016)
第 33 届国际机器学习会议论文集 (ICML 2016)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Ilias Diakonikolas;J. Schmidt - 通讯作者:
J. Schmidt
On the Computation and Verification Query Complexity of Symmetric Functions
论对称函数的计算与验证查询复杂度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Alon Orlitksy - 通讯作者:
Alon Orlitksy
Recent results on pattern maximum likelihood
模式最大似然的最新结果
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;A. Orlitsky;Shengjun Pan - 通讯作者:
Shengjun Pan
Jayadev Acharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayadev Acharya', 18)}}的其他基金
CIF: Small: Learning Quantum Information Measures
CIF:小:学习量子信息测量
- 批准号:
1815893 - 财政年份:2018
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
CRII: CIF: Learning with Memory Constraints: Efficient Algorithms and Information Theoretic Lower Bounds
CRII:CIF:记忆约束学习:高效算法和信息论下界
- 批准号:
1657471 - 财政年份:2017
- 资助金额:
$ 55.27万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in Observational Studies -- Theory, Methods, and Beyond
职业:观察研究中的统计推断——理论、方法及其他
- 批准号:
2338760 - 财政年份:2024
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Distribution-Free and Adaptive Statistical Inference
职业:无分布和自适应统计推断
- 批准号:
2338464 - 财政年份:2024
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
- 批准号:
2237322 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
- 批准号:
2239234 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
- 批准号:
2347760 - 财政年份:2023
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: New Statistical Approaches for Studying Evolutionary Processes: Inference, Attribution and Computation
职业:研究进化过程的新统计方法:推理、归因和计算
- 批准号:
2143242 - 财政年份:2022
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Fast and Accurate Statistical Learning and Inference from Large-Scale Data: Theory, Methods, and Algorithms
职业:从大规模数据中快速准确地进行统计学习和推理:理论、方法和算法
- 批准号:
2046874 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Robust and Efficient Algorithms for Statistical Estimation and Inference
职业:用于统计估计和推理的稳健且高效的算法
- 批准号:
2045068 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant
CAREER: Statistical Inference of Tail Dependent Time Series
职业:尾部相关时间序列的统计推断
- 批准号:
2131821 - 财政年份:2021
- 资助金额:
$ 55.27万 - 项目类别:
Continuing Grant














{{item.name}}会员




