CRII: CIF: Learning with Memory Constraints: Efficient Algorithms and Information Theoretic Lower Bounds
CRII:CIF:记忆约束学习:高效算法和信息论下界
基本信息
- 批准号:1657471
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-15 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The trade-offs between resources such as the amount of data, the amount of storage, computation time for statistical estimation tasks are at the core of modern data science. Depending on the setting, some of the resources might be more valuable than others. For example, in credit analysis and population genetics, the amount of data is vital. For applications involving mobile devices, sensor networks, or biomedical implants, the storage available is limited and is a precious resource. This project aims to advance our understanding of the trade-offs between the amount of storage and the amount of data required for statistical tasks by (i) designing efficient algorithms that require small space and (ii) establishing fundamental limits on the storage required for these tasks. The research is at the intersection of streaming algorithms, which is primarily concerned with storage requirements of algorithmic problems, and statistical learning, which studies data requirements for statistical tasks. The investigators formulate basic statistical problems under storage constraints. The specific questions include entropy estimation of discrete distributions, a canonical problem that researchers from various fields including statistics, information theory, and computer science have studied. The paradigm of interest is the following: while the known sample-efficient entropy estimation algorithms require a lot of storage, it might be possible to reduce the storage requirements drastically by taking a little more than the optimal number of samples. The complementary side of the problem is purely information theoretic. In it, the researchers expect to develop general lower bounds that can be used to prove fundamental limits on the storage-sample trade-offs.
资源之间的权衡,如数据量、存储量、统计估计任务的计算时间,是现代数据科学的核心。根据环境的不同,某些资源可能比其他资源更有价值。例如,在信用分析和人口遗传学中,数据量至关重要。对于涉及移动设备、传感器网络或生物医学植入物的应用,可用的存储空间是有限的,是一种宝贵的资源。这个项目旨在通过(1)设计需要小空间的有效算法和(2)建立对这些任务所需存储的基本限制,来促进我们对统计任务所需的存储量和数据量之间的权衡的理解。这项研究是流算法和统计学习的交汇点,前者主要关注算法问题的存储需求,后者研究统计任务的数据需求。研究人员在存储限制下制定基本的统计问题。具体问题包括离散分布的熵估计,这是一个来自不同领域的研究人员研究的典型问题,包括统计学、信息论和计算机科学。令人感兴趣的范例如下:虽然已知的样本效率高的熵估计算法需要大量存储,但通过采集略多于最佳样本数量的样本来大幅降低存储需求是可能的。这个问题的补充方面纯粹是信息论。在这项研究中,研究人员希望开发出一般的下限,可以用来证明存储样本权衡的基本限制。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Improved Bounds for Minimax Risk of Estimating Missing Mass
改进估计缺失质量的最小最大风险的界限
- DOI:10.1109/isit.2018.8437620
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Acharya, Jayadev;Bao, Yelun;Kang, Yuheng;Sun, Ziteng
- 通讯作者:Sun, Ziteng
Differentially Private Testing of Identity and Closeness of Discrete Distributions
- DOI:
- 发表时间:2017-07
- 期刊:
- 影响因子:0
- 作者:Jayadev Acharya;Ziteng Sun;Huanyu Zhang
- 通讯作者:Jayadev Acharya;Ziteng Sun;Huanyu Zhang
INSPECTRE: Privately Estimating the Unseen
- DOI:10.29012/jpc.724
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Jayadev Acharya;Gautam Kamath;Ziteng Sun;Huanyu Zhang
- 通讯作者:Jayadev Acharya;Gautam Kamath;Ziteng Sun;Huanyu Zhang
Estimating Sparse Discrete Distributions Under Privacy and Communication Constraints
估计隐私和通信约束下的稀疏离散分布
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Acharya, Jayadev;Kairouz, Peter;Liu, Yuhan;Sun, Ziteng
- 通讯作者:Sun, Ziteng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayadev Acharya其他文献
Sorting with adversarial comparators and application to density estimation
使用对抗性比较器进行排序及其在密度估计中的应用
- DOI:
10.1109/isit.2014.6875120 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Ashkan Jafarpour;A. Orlitsky;A. Suresh - 通讯作者:
A. Suresh
Adaptive estimation in weighted group testing
加权组测试中的自适应估计
- DOI:
10.1109/isit.2015.7282829 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;C. Canonne;Gautam Kamath - 通讯作者:
Gautam Kamath
Proceedings of the 33rd International Conference on Machine Learning (ICML 2016)
第 33 届国际机器学习会议论文集 (ICML 2016)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Ilias Diakonikolas;J. Schmidt - 通讯作者:
J. Schmidt
On the Computation and Verification Query Complexity of Symmetric Functions
论对称函数的计算与验证查询复杂度
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;Alon Orlitksy - 通讯作者:
Alon Orlitksy
Recent results on pattern maximum likelihood
模式最大似然的最新结果
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Jayadev Acharya;A. Orlitsky;Shengjun Pan - 通讯作者:
Shengjun Pan
Jayadev Acharya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayadev Acharya', 18)}}的其他基金
CAREER: Statistical Inference Under Information Constraints: Efficient Algorithms and Fundamental Limits
职业:信息约束下的统计推断:高效算法和基本限制
- 批准号:
1846300 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
CIF: Small: Learning Quantum Information Measures
CIF:小:学习量子信息测量
- 批准号:
1815893 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Wolbachia的cif因子与天麻蚜蝇dsx基因协同调控生殖不育的机制研究
- 批准号:JCZRQN202501187
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
SHR和CIF协同调控植物根系凯氏带形成的机制
- 批准号:31900169
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
- 批准号:
2246058 - 财政年份:2023
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
- 批准号:
2243355 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Automated and Robust Image Watermarking: A Deep Learning Approach
CRII:CIF:自动且鲁棒的图像水印:一种深度学习方法
- 批准号:
2104267 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Machine Learning Based Equalization Towards Multitrack Synchronization and Detection in Two-Dimensional Magnetic Recording
CRII:CIF:基于机器学习的均衡,实现二维磁记录中的多轨同步和检测
- 批准号:
2105092 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: A Machine Learning-based Computational Framework for Large-Scale Stochastic Programming
CRII:CIF:基于机器学习的大规模随机规划计算框架
- 批准号:
1948159 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: New Directions in Learning from Data with Faulty Correspondence
CRII:CIF:从错误对应的数据中学习的新方向
- 批准号:
1849876 - 财政年份:2019
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1755960 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Learning Hidden Structures in Networks: Fundamental Limits and Efficient Algorithms
CRII:CIF:学习网络中的隐藏结构:基本限制和高效算法
- 批准号:
1850743 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Crowdsourcing-aware Learning
CRII:CIF:众包意识学习
- 批准号:
1755656 - 财政年份:2018
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: CIF: Fast Algorithms for Learning Graphical Models from Scarce Data
CRII:CIF:从稀缺数据中学习图形模型的快速算法
- 批准号:
1565516 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant