CAREER: Towards the Design of Models and Systems for Efficient Prediction

职业:设计高效预测的模型和系统

基本信息

  • 批准号:
    1846431
  • 负责人:
  • 金额:
    $ 45.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Advances in artificial intelligence (AI) are enabling new services and applications including voice-enabled digital assistants, machine translation, personalized medicine, fraud detection, and autonomous vehicles. This new class of intelligent services and applications are critical to the economy and transforming century-old industries ranging from commerce and banking to transportation and healthcare. In this research, the problem of deploying advanced machine learning models and prediction pipelines is studied. A holistic approach is taken for the design of the computer systems needed to render predictions and the models and algorithms that they run. Models are developed that can scale their complexity to avoid overthinking and thereby reduce the energy required to make predictions along with algorithms and systems to automatically configure complex prediction pipelines to simplify model deployment while also improving efficiency and reliability. This research will also produce and promote open-source software systems that can be used across industries. Building these new AI-powered applications will also require new skills and education. A key part of this proposal is open-source course development. A new Data Science major is being designed and this grant will fund new open modules in the data science courses. These courses are taken by students in engineering as well as across the entire campus and provide the fundamental skills needed to understand how machine learning can be used to solve real-world problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)的进步正在催生新的服务和应用,包括语音数字助理、机器翻译、个性化医疗、欺诈检测和自动驾驶汽车。这种新型智能服务和应用对经济和改变从商业和银行到运输和医疗保健等百年历史的行业至关重要。在本研究中,研究了部署先进的机器学习模型和预测管道的问题。计算机系统的设计需要采用一种整体的方法来呈现预测以及它们运行的模型和算法。开发的模型可以扩展其复杂性,以避免过度思考,从而减少进行预测所需的能量,以及自动配置复杂预测管道的算法和系统,以简化模型部署,同时提高效率和可靠性。这项研究还将产生和推广可跨行业使用的开源软件系统。构建这些新的人工智能应用程序还需要新的技能和教育。这个提议的一个关键部分是开源课程开发。一个新的数据科学专业正在设计中,这笔拨款将资助数据科学课程中的新开放模块。这些课程由工程专业的学生以及整个校园的学生学习,提供了理解如何使用机器学习来解决现实世界问题所需的基本技能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Train Big, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhuohan Li;Eric Wallace;Sheng Shen;Kevin Lin;K. Keutzer;Dan Klein;Joey Gonzalez
  • 通讯作者:
    Zhuohan Li;Eric Wallace;Sheng Shen;Kevin Lin;K. Keutzer;Dan Klein;Joey Gonzalez
D3: a dynamic deadline-driven approach for building autonomous vehicles
Deep Mixture of Experts via Shallow Embedding
  • DOI:
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Wang;F. Yu;Lisa Dunlap;Yian Ma;Yi-An Ma;Ruth Wang;Azalia Mirhoseini;Trevor Darrell;Joseph Gonzalez
  • 通讯作者:
    Xin Wang;F. Yu;Lisa Dunlap;Yian Ma;Yi-An Ma;Ruth Wang;Azalia Mirhoseini;Trevor Darrell;Joseph Gonzalez
FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions
Accel: A Corrective Fusion Network for Efficient Semantic Segmentation on Video
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Gonzalez其他文献

Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting
出于正确的原因记住:解释减少灾难性遗忘
  • DOI:
    10.22541/au.162464884.44336363/v1
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sayna Ebrahimi;Suzanne Petryk;Akash Gokul;William Gan;Joseph Gonzalez;Marcus Rohrbach;Trevor Darrell
  • 通讯作者:
    Trevor Darrell
SegNBDT: Visual Decision Rules for Segmentation
SegNBDT:分割的视觉决策规则
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alvin Wan;Daniel Ho;You Song;Henk Tillman;Sarah Adel Bargal;Joseph Gonzalez
  • 通讯作者:
    Joseph Gonzalez
Leveraging Sparse Linear Layers for Debuggable Deep Networks A. SAGA-based solver for generalized linear models
利用稀疏线性层实现可调试深度网络 A. 用于广义线性模型的基于 SAGA 的求解器
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alvin Wan;Lisa Dunlap;Daniel Ho;Jihan Yin;Scott Lee;Henry Jin;Suzanne Petryk;Sarah Adel Bargal;Joseph Gonzalez
  • 通讯作者:
    Joseph Gonzalez
Parallel Splash Belief Propagation
并行飞溅置信传播
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Gonzalez;Yucheng Low;Carlos Guestrin
  • 通讯作者:
    Carlos Guestrin
Three dimensional characterization of failure evolution of tin and silicon in lithium ion battery electrodes
  • DOI:
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph Gonzalez
  • 通讯作者:
    Joseph Gonzalez

Joseph Gonzalez的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Gonzalez', 18)}}的其他基金

EAR-PF: Quartz-in-zircon: An elastic model for quantifying depth and time scales of crystallization and exhumation of Hadean zircon
EAR-PF:锆石中的石英:用于量化冥古宙锆石结晶和折返的深度和时间尺度的弹性模型
  • 批准号:
    1952698
  • 财政年份:
    2020
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Fellowship Award

相似海外基金

CAREER: Optimal Experimental Design through Contact: Towards Robots that Plan to Learn
职业:通过接触进行最佳实验设计:迈向计划学习的机器人
  • 批准号:
    2238066
  • 财政年份:
    2023
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards Self-Sustainable Wearable Systems Design for Mobile Health Applications
职业:面向移动健康应用的自我可持续可穿戴系统设计
  • 批准号:
    2238257
  • 财政年份:
    2023
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards Learning-Based Storage Systems with Hardware-Software Co-Design
职业:通过软硬件协同设计实现基于学习的存储系统
  • 批准号:
    2144796
  • 财政年份:
    2022
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
  • 批准号:
    2144383
  • 财政年份:
    2022
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Predictive Theory of Algorithmic Mechanism Design
职业:算法机制设计的预测理论
  • 批准号:
    1942497
  • 财政年份:
    2020
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Robust Theory of Mechanism Design
职业生涯:建立稳健的机构设计理论
  • 批准号:
    1942583
  • 财政年份:
    2020
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Design and Synthesis of Heterocyclic Aryldiamine Polymers: Towards a New Class of Processable and Electrochemically Stable Conducting Materials
职业:杂环芳二胺聚合物的设计与合成:开发一类新型可加工且电化学稳定的导电材料
  • 批准号:
    1945503
  • 财政年份:
    2020
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Beyond the Code - Towards Next Generation Design for Deep Foundations
职业生涯:超越规范 - 迈向下一代深层基础设计
  • 批准号:
    1752303
  • 财政年份:
    2018
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Standard Grant
CAREER: Towards Provably-Secure Design of Integrated Circuits
职业:迈向可证明安全的集成电路设计
  • 批准号:
    1652842
  • 财政年份:
    2017
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
CAREER: Towards General-Purpose, High-Order Integral Equation Methods for Computer Simulation in Engineering: Analysis, Algorithm Design, and Applications
职业:面向工程计算机仿真的通用高阶积分方程方法:分析、算法设计和应用
  • 批准号:
    1654756
  • 财政年份:
    2017
  • 资助金额:
    $ 45.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了