CAREER: Towards Learning-Based Storage Systems with Hardware-Software Co-Design

职业:通过软硬件协同设计实现基于学习的存储系统

基本信息

  • 批准号:
    2144796
  • 负责人:
  • 金额:
    $ 59.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Storage systems today have been built into a complicated ecosystem, which involves the development and deployment of storage devices, storage software, and application-level data stores. To rapidly meet the ever-increasing storage performance and efficiency requirements, the entire storage hardware and software stack need to adapt instantly in a coordinated fashion. However, it is challenging to achieve this with current human-driven systems-building approaches. Recent advancements in machine learning techniques show that the learning-based approach is a promising method to solve system optimization problems. However, it remains unclear how the storage ecosystem should be advanced to embrace the learning techniques to facilitate its development, deployment, and optimizations across the full stack. This project proposes to develop systems and architecture techniques to build a learning-based storage ecosystem. It has four major thrusts. First, the project proposes to enable the development of customized storage devices for specific application types with automated tuning of hardware specifications, therefore, we can enable developers to identify optimal device specifications with much less time and effort. Second, the project plans to develop elastic storage management for multi-tenant applications using reinforcement learning, thus, we can achieve both improved resource utilization and performance isolation. Third, the project proposes to integrate the storage hardware knowledge into the learning procedure to facilitate the development of learning-based storage software. Finally, the project will revisit the storage hardware architecture for building learning-based storage drives to further enhance the learning-based storage ecosystem. The project will facilitate the development of a new course that centers around memory and storage technologies. The project will also promote computer systems and architecture education to underrepresented and high school students through various research workshops and summer camps.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的存储系统已经构建成一个复杂的生态系统,其中涉及存储设备、存储软件和应用程序级数据存储的开发和部署。为了快速满足不断增长的存储性能和效率要求,整个存储硬件和软件堆栈需要以协调的方式立即适应。然而,这是具有挑战性的,以实现这一点与目前的人为驱动的系统建设方法。机器学习技术的最新进展表明,基于学习的方法是解决系统优化问题的一种很有前途的方法。然而,目前尚不清楚存储生态系统应如何推进,以采用学习技术来促进其整个堆栈的开发,部署和优化。该项目建议开发系统和架构技术,以构建基于学习的存储生态系统。它有四个主要的推力。首先,该项目建议为特定应用类型开发定制的存储设备,并自动调整硬件规格,因此,我们可以使开发人员以更少的时间和精力确定最佳的设备规格。其次,该项目计划使用强化学习为多租户应用程序开发弹性存储管理,从而实现提高资源利用率和性能隔离。第三,该项目建议将存储硬件知识集成到学习过程中,以促进基于学习的存储软件的开发。最后,该项目将重新审视构建基于学习的存储驱动器的存储硬件架构,以进一步增强基于学习的存储生态系统。该项目将促进围绕内存和存储技术的新课程的开发。该项目还将通过各种研究讲习班和夏令营促进计算机系统和建筑教育,以代表性不足和高中学生。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G10: Enabling An Efficient Unified GPU Memory and Storage Architecture with Smart Tensor Migrations
Learning to Drive Software-Defined Solid-State Drives
学习驱动软件定义的固态硬盘
LeaFTL: A Learning-Based Flash Translation Layer for Solid-State Drives
BlockFlex: Enabling Storage Harvesting with Software-Defined Flash in Modern Cloud Platforms
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Reidys;Jinghan Sun;Anirudh Badam;S. Noghabi;Jian Huang
  • 通讯作者:
    Benjamin Reidys;Jinghan Sun;Anirudh Badam;S. Noghabi;Jian Huang
Learning to Drive Software-Defined Storage
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jian Huang;Daixuan Li;Jinghan Sun
  • 通讯作者:
    Jian Huang;Daixuan Li;Jinghan Sun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jian Huang其他文献

The Diamond Radiation Detector with an Ohmic Contact using Diamond‐like Carbon Interlayer
使用类金刚石碳夹层的欧姆接触金刚石辐射探测器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Run Xu;Jian Huang;Ke Tang;王林军
  • 通讯作者:
    王林军
Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings
高功率二极管激光熔覆Fe-Co-B-Si-Nb涂层的非晶结构演变
  • DOI:
    10.1016/j.apsusc.2012.08.120
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yanyan Zhu;Zhuguo Li;Jian Huang;Min Li;Ruifeng Li;Yixiong Wu
  • 通讯作者:
    Yixiong Wu
Coexistence of multiple myeloma and clear cell renal cell carcinoma: a case report and review of literature.
多发性骨髓瘤与透明细胞肾细胞癌共存:病例报告及文献复习。
Design of multichannel QMF banks via frequency-domain optimizations
通过频域优化设计多通道 QMF 组
Towards Fast and Reliable Evaluation of Detection Performance of Space Surveillance Sensors
快速可靠地评估空间监视传感器的检测性能
  • DOI:
    10.3390/rs14030483
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jian Huang;Xiangxu Lei;Bin Li;Jizhang Sang;Hongkang Liu
  • 通讯作者:
    Hongkang Liu

Jian Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jian Huang', 18)}}的其他基金

Collaborative Research: Elements: Towards A Scalable Infrastructure for Archival and Reproducible Scientific Visualizations
协作研究:要素:建立用于存档和可重复科学可视化的可扩展基础设施
  • 批准号:
    2209767
  • 财政年份:
    2022
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
EAGER: CRYO: Continuous Adiabatic Demagnetization Refrigeration Below 1K without Helium-3
EAGER:CRYO:连续绝热退磁制冷低于 1K,无需 Helium-3
  • 批准号:
    2232489
  • 财政年份:
    2022
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating multi-dimensional omics data for quantifying disease heterogeneity
协作研究:整合多维组学数据以量化疾病异质性
  • 批准号:
    1916199
  • 财政年份:
    2019
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scaling the Software-Defined Data Center with Network-Storage Stack Co-Design
SPX:协作研究:通过网络存储堆栈协同设计扩展软件定义的数据中心
  • 批准号:
    1919044
  • 财政年份:
    2019
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
CRII: CSR: System Techniques to Exploit the Byte-Accessibility of Solid-State Drives
CRII:CSR:利用固态硬盘字节可访问性的系统技术
  • 批准号:
    1850317
  • 财政年份:
    2019
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
II-New: Collaborative: A Mixed Reality Environment for Enabling Everywhere Data-Centric Work
II-新:协作:支持无处不在的以数据为中心的工作的混合现实环境
  • 批准号:
    1629890
  • 财政年份:
    2016
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
Quantum electron solids and interaction-driven phenomena in two- and one-dimensional systems
二维和一维系统中的量子电子固体和相互作用驱动的现象
  • 批准号:
    1410302
  • 财政年份:
    2014
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
Constrained Group Selection and Structure Estimation in Semiparametric Models
半参数模型中的约束组选择和结构估计
  • 批准号:
    1208225
  • 财政年份:
    2012
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
Undergraduate Training at NSF Teragrid XD RDAV Center
NSF Teragrid XD RDAV 中心的本科生培训
  • 批准号:
    1136246
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
Electron-Electron Interaction Driven Phase Transition in Low Dimensional Systems
低维系统中电子-电子相互作用驱动的相变
  • 批准号:
    1105183
  • 财政年份:
    2011
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
  • 批准号:
    2340171
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Real-world Reinforcement Learning
职业:走向现实世界的强化学习
  • 批准号:
    2339395
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Environment-Aware Adaptive Safety for Learning-Enabled Multiagent Systems with Application to Target Drone Capturing
职业:为支持学习的多智能体系统实现环境感知的自适应安全,并应用于目标无人机捕获
  • 批准号:
    2336189
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
  • 批准号:
    2338878
  • 财政年份:
    2024
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Adaptive experiments towards learning treatment effect heterogeneity
职业:学习治疗效果异质性的适应性实验
  • 批准号:
    2239047
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Hierarchical and Provably Safe Control for Learning-Enabled Autonomous Systems
职业:为支持学习的自主系统实现分层且可证明安全的控制
  • 批准号:
    2237850
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
CAREER: Towards Provenance-Driven Understanding of Machine Learning Robustness
职业:对机器学习鲁棒性的起源驱动理解
  • 批准号:
    2238084
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Continuing Grant
CAREER: Towards Embodied Learning for K-12 Machine Learning (ML) Education
职业:迈向 K-12 机器学习 (ML) 教育的具体学习
  • 批准号:
    2238675
  • 财政年份:
    2023
  • 资助金额:
    $ 59.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了