CAREER: Nanolithography Using Ultrashort-Pulsed Laser Processing

职业:使用超短脉冲激光加工的纳米光刻

基本信息

项目摘要

This Faculty Early Career Development (CAREER) Program grant supports basic research in laser-based advanced manufacturing that enables single-step fabrication of nano-scale structures over a large area. Current nanofabrication processes involve multiple steps and are not suitable for fabricating one-of-a-kind or customized nanostructures in a cost-effective manner. In this project, an ultrashort-pulsed laser, which emits flashes of light (pulses) with extremely short duration, is used to drill, cut and pattern materials with nano-scale precision. Because the duration of a pulse is so short (less than one trillionth of a second), the energy of the laser pulse is highly concentrated in the material, creating conditions that are not normally achieved with other processing methods. Ultrashort-pulsed laser processing provides the key advantage of significantly-reducing collateral damage, that is damaging the surrounding material, and thus improving precision in the processing of a variety of materials. This project advances the understanding of ultrashort-pulsed laser processing of dielectric materials, such as glass and diamond, which are commonly used in display panels, microelectronics and cutting tools. Advances resulting from the project benefits society by enabling a new method for nano-scale patterning that reduces manufacturing time and lowers cost, and by supporting an education and outreach program aimed at cultivating a well-trained manufacturing workforce. The project raises public awareness of laser and optical technologies in everyday life, attracts young students to science and technology, and guides college students to pursue a career in advanced manufacturing. The new nanolithography method is based on laser ablation using a sequence of ultrashort laser pulses (a pulse train) that is temporally tuned to create localization of free-carrier population and enhanced absorption of laser energy. Nonlinear interaction between ultrashort laser pulses and wide-bandgap dielectrics is studied and controlled to enhance spatial resolution and improve energy-absorption efficiency. The research generates knowledge of the critical process parameters and relevant nanoscale physics that enable this new nanofabrication method. Three processing modes - drilling, cutting, and projection (using an electronically-controlled spatial light modulator as a customizable photomask) - are explored, and the challenges unique to each mode are studied. Spatial and temporal electron dynamics, which play a key role in laser processing of dielectric materials, are investigated by transient pump-probe microscopy and laser damage threshold measurement. Large-area patterning of arbitrary nanostructures are demonstrated using a system that integrates pulse-train processing with mask-projection lithography. This project enhances the capability of ultrashort-pulsed lasers as a manufacturing tool and opens up new opportunities for studying laser-matter interactions in the above-damage-threshold regime.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)计划资助支持基于激光的先进制造的基础研究,该制造能够在大面积上单步制造纳米级结构。目前的纳米制造工艺涉及多个步骤,并且不适合以具有成本效益的方式制造一种或定制的纳米结构。在这个项目中,超短脉冲激光器,它发射的闪光(脉冲)具有极短的持续时间,用于钻孔,切割和图案的材料与纳米级的精度。由于脉冲的持续时间很短(不到万亿分之一秒),激光脉冲的能量高度集中在材料中,创造了其他加工方法通常无法实现的条件。超短脉冲激光加工提供了显著减少附带损伤的关键优势,即破坏周围材料,从而提高了各种材料加工的精度。该项目推进了对电介质材料(如玻璃和金刚石)的超短脉冲激光加工的理解,这些材料通常用于显示面板,微电子和切割工具。该项目取得的进展使社会受益,因为它实现了一种新的纳米级图案化方法,减少了制造时间,降低了成本,并支持旨在培养训练有素的制造业劳动力的教育和推广计划。该项目提高了公众对日常生活中激光和光学技术的认识,吸引年轻学生接触科学技术,并引导大学生从事先进制造业职业。新的纳米光刻方法是基于激光烧蚀,使用超短激光脉冲序列(脉冲串),其在时间上被调谐以创建自由载流子群体的本地化和增强激光能量的吸收。研究并控制超短激光脉冲与宽带隙光子晶体之间的非线性相互作用,以提高空间分辨率和能量吸收效率。该研究产生了关键工艺参数和相关纳米物理学的知识,使这种新的纳米制造方法成为可能。三种加工模式-钻孔,切割和投影(使用电子控制的空间光调制器作为可定制的光掩模)-进行了探索,并研究了每种模式所面临的独特挑战。利用瞬态泵浦-探测显微术和激光损伤阈值测量技术研究了电介质材料激光加工中的电子动力学时空过程。任意纳米结构的大面积图案化证明使用一个系统,集成了脉冲序列处理与掩模投影光刻。该项目增强了超短脉冲激光作为制造工具的能力,并为研究激光与物质在高于损伤阈值范围内的相互作用开辟了新的机会。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Laser processing of dielectrics using spatiotemporally tuned ultrashort pulses
使用时空调谐超短脉冲对电介质进行激光加工
  • DOI:
    10.2351/7.0000081
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhou, Boyang;Rahaman, Arifur;Du, Xinpeng;Kar, Aravinda;Soileau, M. J.;Yu, Xiaoming
  • 通讯作者:
    Yu, Xiaoming
Generating bursts of femtosecond laser pulses with a tunable delay and envelope in a folded Michelson interferometer
在折叠迈克尔逊干涉仪中生成具有可调延迟和包络的飞秒激光脉冲串
  • DOI:
    10.1364/ao.425628
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Zhou, Boyang;Cheng, He;Soileau, M. J.;Yu, Xiaoming
  • 通讯作者:
    Yu, Xiaoming
Aberration correction for SLM-generated Bessel beams propagating through tilted interfaces
  • DOI:
    10.1016/j.optcom.2020.126213
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    He Cheng;Chun Xia;S. Kuebler;Xiaoming Yu
  • 通讯作者:
    He Cheng;Chun Xia;S. Kuebler;Xiaoming Yu
Reducing feature size in femtosecond laser ablation of fused silica by exciton-seeded photoionization
通过激子种子光电离减少熔融石英飞秒激光烧蚀中的特征尺寸
  • DOI:
    10.1364/ol.385011
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Zhou, Boyang;Kar, Aravinda;Soileau, M. J.;Yu, Xiaoming
  • 通讯作者:
    Yu, Xiaoming
Volumetric microfabrication of helical structures for industrial applications
  • DOI:
    10.1117/12.2614703
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    He Cheng;Pooria Golvari;Chun Xia;Mingman Sun;Meng Zhang;S. Kuebler;Xiaoming Yu
  • 通讯作者:
    He Cheng;Pooria Golvari;Chun Xia;Mingman Sun;Meng Zhang;S. Kuebler;Xiaoming Yu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoming Yu其他文献

Modeling and experimental validation of transverse compressive behavior of sepiolite reinforced rubber composites
海泡石增强橡胶复合材料横向压缩行为的建模和实验验证
  • DOI:
    10.1007/s12221-015-5212-2
  • 发表时间:
    2015-10
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Xiaoming Yu;Boqin Gu;Bin Zhang
  • 通讯作者:
    Bin Zhang
Chaperone-mediated autophagy degradation of IGF-1Rβ induced by NVP-AUY922 in pancreatic cancer
NVP-AUY922 在胰腺癌中诱导的伴侣介导的 IGF-1Rβ 自噬降解
  • DOI:
    10.1007/s00018-019-03080-x
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nina Xue;Fangfang Lai;Tingting Du;Ming Ji;Di Liu;Chunhong Yan;Sen Zhang;Xiaoming Yu;Jing Jin;Xiaoguang Chen
  • 通讯作者:
    Xiaoguang Chen
Ultrashort laser-induced periodic structures on ZnSe substrate
ZnSe 基底上的超短激光诱导周期结构
  • DOI:
    10.1117/12.2501950
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Chai;He Cheng;Xiaoming Yu;A. Chew;X. Ren;Z. Chang;M. Soileau
  • 通讯作者:
    M. Soileau
Facile Synthesis and Special Phase Transformation of Hydrophilic Iron Oxides Nanoparticles
亲水性氧化铁纳米颗粒的简易合成和特殊相变
  • DOI:
    10.1155/2017/1064863
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liqiao Chen;Yunqian Long;Zhe Leng;Jinfei Hu;Xuan Yu;Xiaoming Yu
  • 通讯作者:
    Xiaoming Yu
Bioinformatics and Expression Pattern Analysis of Soybean Fatty Acid Desaturase Family Gene
大豆脂肪酸去饱和酶家族基因的生物信息学及表达模式分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nan Wu;Longxing Jiang;Xiaoming Yu;Xiangbo Yang;Dianyuan Chen;Ming
  • 通讯作者:
    Ming

Xiaoming Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoming Yu', 18)}}的其他基金

Collaborative Research: All-Optical Fabrication of Low-Loss, High-Index-Contrast, Silicon-in-Silicon Waveguides
合作研究:低损耗、高折射率对比度、硅中硅波导的全光学制造
  • 批准号:
    2129006
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Mechanical nanolithography without solvents - a step towards sustainable nanomanufacturing
无溶剂机械纳米光刻——迈向可持续纳米制造的一步
  • 批准号:
    EP/W034387/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Wrinkle nanolithography for the bottom-up fabrication of DNA nanowire arrays
用于自下而上制造 DNA 纳米线阵列的皱纹纳米光刻
  • 批准号:
    22K18753
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Rapid Prototyping of Novel Devices with In-situ Deposition, Imaging and Nanolithography
利用原位沉积、成像和纳米光刻技术快速制作新型器件原型
  • 批准号:
    EP/W006243/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
X-Ray Nanolithography Facility: Towards the ultimate resolution
X 射线纳米光刻设备:迈向终极分辨率
  • 批准号:
    LE200100174
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Nanolithography system
纳米光刻系统
  • 批准号:
    441219355
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Major Research Instrumentation
CAREER: Three-Dimensional Nanolithography with Inexpensive Hardware
职业:使用廉价硬件的三维纳米光刻
  • 批准号:
    2022818
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of the NanoFrazor - a unique AFM-based nanolithography tool to support multidisciplinary research and promote nanoscience in South Carolina and beyond
MRI:收购 NanoFrazor - 一种独特的基于 AFM 的纳米光刻工具,用于支持多学科研究并促进南卡罗来纳州及其他地区的纳米科学
  • 批准号:
    1920117
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a 3-D Nanolithography System
MRI:获取 3D 纳米光刻系统
  • 批准号:
    1828480
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Optically-activatable nanolithography for ultralow energy long data storage
用于超低能量长数据存储的光激活纳米光刻
  • 批准号:
    DP170101775
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了