CAREER: Computational Methods for Multiscale Kinetic Systems: Uncertainty, Non-Locality, and Variational Formulation

职业:多尺度动力学系统的计算方法:不确定性、非定域性和变分公式

基本信息

  • 批准号:
    1846854
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Kinetic theory has emerged as a critical tool in studying many-particle systems with random motion, which arise widely in plasma physics, semiconductors, animal swarms, nuclear engineering, among many others. It bridges the gap between microscopic particle system and macroscopic continuum description, and therefore is at the core of multiscale modeling. In addition to its multiscale nature, this project intends to advance the understanding and computation of kinetic theory in new, emerging aspects that involve uncertainties, non-localities, and variational formulations. A parallel educational objective is to prepare and train students at all levels for multi-disciplinary research through advanced courses, topic seminars, and summer programs.The specific aims of the project include: (1) utilize the variational formulation of macroscopic and kinetic equations to develop scalable, structure preserving, mathematically justifiable methods via advanced optimization techniques; (2) design multiscale computational methods for nonlocal interacting kinetic systems, with emphases on nonlocal collision and connection to fractional diffusion; (3) develop robust algorithms for hyperbolic equations with uncertainty, especially in treating discontinuous solutions; (4) study the inverse problem for nonlinear kinetic systems, including stability analysis with varying scales, numerical regularization and algorithms. The proposed activity is on an interdisciplinary topic and of general interest to both computational mathematicians and scientists from other areas. The variational methods provide a new perspective in overcoming difficulties that are shared among most partial differential equation (PDE) models nowadays: multiple scales, high dimensionality and necessity in preserving physical quantities. The research outcome will have an impact on other disciplines including computational optimal transport, optimal control theory, mean field games, and machine learning. The fractional diffusion solvers will be equally applicable to photon transport through cosmic dust or atmosphere, electron beam dose calculation, and other nonlocal PDEs arising in material science, finance, and plasma physics. Uncertainties that are omnipresent in kinetic equations have a profound influence on the solution behavior and must be carefully quantified. The analysis and algorithms investigated through this project, in both forward and inverse setting, will facilitate the understanding of sensitivity in the system under random perturbations, and largely advance the modern design of device with optimal performance.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动力学理论已成为研究具有随机运动的多粒子系统的关键工具,其广泛出现在等离子体物理学、半导体、动物群、核工程等领域。它弥合了微观粒子系统和宏观连续描述之间的差距,因此是多尺度建模的核心。除了其多尺度性质外,该项目还旨在促进对涉及不确定性、非定域性和变分公式等新兴方面的动力学理论的理解和计算。并行的教育目标是通过高级课程、主题研讨会和暑期项目,为各级学生进行多学科研究做好准备和培训。该项目的具体目标包括:(1)利用宏观和动力学方程的变分公式,通过先进的优化技术开发可扩展的、结构保持的、数学上合理的方法; (2)设计非局域相互作用动力学系统的多尺度计算方法,重点是非局域碰撞和与分数扩散的联系; (3) 开发具有不确定性的双曲方程的鲁棒算法,特别是在处理不连续解方面; (4)研究非线性运动系统的反问题,包括变尺度稳定性分析、数值正则化和算法。拟议的活动是一个跨学科主题,计算数学家和其他领域的科学家普遍感兴趣。变分方法为克服当今大多数偏微分方程(PDE)模型所面临的困难提供了新的视角:多尺度、高维性和保留物理量的必要性。研究成果将对其他学科产生影响,包括计算最优传输、最优控制理论、平均场博弈和机器学习。分数扩散求解器同样适用于通过宇宙尘埃或大气的光子传输、电子束剂量计算以及材料科学、金融和等离子体物理学中出现的其他非局域偏微分方程。动力学方程中普遍存在的不确定性对解的行为具有深远的影响,必须仔细量化。通过该项目在正向和逆向设置中研究的分析和算法将有助于理解系统在随机扰动下的敏感性,并在很大程度上推进具有最佳性能的设备的现代设计。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proximal-gradient algorithm for crystal surface evolution
  • DOI:
    10.1007/s00211-022-01320-0
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Katy Craig;Jianguo Liu;Jianfeng Lu;J. Marzuola;Li Wang
  • 通讯作者:
    Katy Craig;Jianguo Liu;Jianfeng Lu;J. Marzuola;Li Wang
Bayesian Instability of Optical Imaging: Ill Conditioning of Inverse Linear and Nonlinear Radiative Transfer Equation in the Fluid Regime
  • DOI:
    10.3390/computation10020015
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin Li;Kit Newton;Li Wang
  • 通讯作者:
    Qin Li;Kit Newton;Li Wang
Hessian Informed Mirror Descent
黑森知情镜后裔
  • DOI:
    10.1007/s10915-022-01933-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Wang, Li;Yan, Ming
  • 通讯作者:
    Yan, Ming
Transfer learning enhanced DeepONet for long-time prediction of evolution equation
迁移学习增强 DeepONet 用于进化方程的长时间预测
Solving multiscale steady radiative transfer equation using neural networks with uniform stability
  • DOI:
    10.1007/s40687-022-00345-z
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Yulong Lu;Li Wang;Wuzhe Xu
  • 通讯作者:
    Yulong Lu;Li Wang;Wuzhe Xu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Li Wang其他文献

A Framework for States Co-Estimation of Hybrid Energy Storage Systems Based on Fractional-Order Theory
基于分数阶理论的混合储能系统状态联合估计框架
Enhancing gas sensing performances and sensing mechanism at atomic and molecule level of WO3 nanoparticles by hydrogenation
通过氢化增强 WO3 纳米颗粒原子和分子水平的气敏性能和传感机制
  • DOI:
    10.1016/j.snb.2018.07.099
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qin Du;Li Wang;Juan Yang;Junfang Liu;Yukun Yuan;Mengzhu Wang;Bin Liu;Xiao Zhang;Yan Ren;Hua Zhao;Heqing Yang
  • 通讯作者:
    Heqing Yang
Fn14 deficiency ameliorates anti-dsDNA IgG-induced glomerular damage in SCID mice.
Fn14 缺乏可改善 SCID 小鼠中抗 dsDNA IgG 诱导的肾小球损伤。
  • DOI:
    10.1155/2018/1256379
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Jiawen Wu;Xiaoyun Min;Li Wang;Jie Yang;Ping Wang;Xingyin Liu;Yumin Xia
  • 通讯作者:
    Yumin Xia
Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching amp; partitioning (Qamp;P) treated steel
高强度淬火中的氢捕获位点和氢致裂纹
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats
睾酮增强老年雄性大鼠黑质中线粒体复合物 V 的功能
  • DOI:
    10.18632/aging.103265
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianyun Zhang;Yu Wang;Yunxiao Kang;Li Wang;Hui Zhao;Xiaoming Ji;Yuanxiang Huang;Wensheng Yan;Rui Cui;Guoliang Zhang;Geming Shi
  • 通讯作者:
    Geming Shi

Li Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Li Wang', 18)}}的其他基金

Advanced Models and Algorithms for Large-Scale High-Dimensional Probabilistic Graph Structure Learning
大规模高维概率图结构学习的先进模型和算法
  • 批准号:
    2009689
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
  • 批准号:
    1903420
  • 财政年份:
    2018
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
  • 批准号:
    1620135
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
  • 批准号:
    2338804
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Development of Adaptive and Efficient Computational Inverse Design Methods for Organic Functional Materials
职业:有机功能材料自适应高效计算逆向设计方法的开发
  • 批准号:
    2339804
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: A Holistic Framework for Designing Multifunctional Materials and Structures Using Computational Optimization Methods
职业:使用计算优化方法设计多功能材料和结构的整体框架
  • 批准号:
    2143422
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2147812
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Robust and High-Performance Computational Methods for Simulating Metamaterial-Based Optical Devices
职业:用于模拟基于超材料的光学设备的稳健且高性能的计算方法
  • 批准号:
    2045636
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Computational design of sustainable hydrogenation systems via a novel combination of data science, optimization, and ab initio methods
职业:通过数据科学、优化和从头算方法的新颖组合进行可持续加氢系统的计算设计
  • 批准号:
    2045550
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Computational methods to improve our understanding of the diversity of genomic structural variation
职业:提高我们对基因组结构变异多样性的理解的计算方法
  • 批准号:
    2042518
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient computational methods for nonlinear optimization and machine learning problems with applications to power systems
职业:非线性优化和机器学习问题的有效计算方法及其在电力系统中的应用
  • 批准号:
    2045829
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Developing New Computational Methods to Address the Missing Data Problem in Population Genomics
职业:开发新的计算方法来解决群体基因组学中的缺失数据问题
  • 批准号:
    2042516
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Developing Computational Methods to predict Hate Crimes
职业:开发预测仇恨犯罪的计算方法
  • 批准号:
    1846531
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了