Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
基本信息
- 批准号:1903420
- 负责人:
- 金额:$ 8.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-12 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic equations with multiple scales arise in diverse applications such as rarefied gas dynamics, plasma physics, semiconductors, and biology; they often introduce severe numerical challenges due to the stiffness that comes from the small scales. Optimal transport plays a fundamental role in image registration, video restoration, urban transport, kinetic theory and many others. However, numerical methods for it have not reached their full capacity to meet the most demanding practical applications. This project aims at both advancing the multiscale computational methods - particularly the asymptotic preserving (AP) schemes - in new prospects for kinetic equations including multi-stage and fractional asymptotic limit, and developing fast parallelizable algorithms for optimal transport via advanced optimization technique. Specifically, the following topics will be investigated in this project: (1) theoretically study the AP schemes for semiconductor Boltzmann equation with two-scale collisions at a deeper depth and generalize them to implicit/high order schemes and to capture the hierarchy of macroscopic models; (2) extend the AP scheme for kinetic equation with fractional diffusion limit to a broader scope including anisotropic scattering, degenerate collision, and Levy-Fokker-Planck interaction (applications to nonclassical photon transport in clouds will be addressed); (3) develop efficient algorithms for optimal transport problems and conduct convergence analysis and apply it to practical problems especially for human crowd dynamics in panic situations. With increasing interest in multiscale kinetic equations and optimal transport, the computational methods developed here will impact beyond the particular applications in this proposal. The dynamics of electron transport in semiconductor devices are one of the main concerns in physics and engineering; the developed methods from this proposal will be equally applicable in a broader context such as gas discharges and multi-group radiative transfer. Nonclassical transport that leads to a fractional diffusion has attracted much attention in plasma physics and economy; it has now been applied in climate science to model the photon transport in clouds as well as in criminology to model the hotspots in residential burglaries. Optimal transport has become a useful tool in image processing, urban transport, computer vision and etc; the development of fast parallelizable algorithms will substantially advance these areas and the application in modeling human crowds is crucial for better preparation of safe mass events.
多尺度动力学方程广泛应用于稀薄气体动力学、等离子体物理、半导体和生物等领域;由于小尺度的刚性,它们常常带来严重的数值挑战。最优交通在图像配准、视频恢复、城市交通、运动理论等诸多领域都具有重要的应用价值。然而,针对这一问题的数值方法还不能完全满足实际应用的要求。该项目的目的是在包括多阶段和分数渐近极限在内的动力学方程的新前景中推进多尺度计算方法,特别是渐近保持(AP)格式,并通过先进的优化技术开发快速可并行化的最优运输算法。具体地说,本项目将研究以下内容:(1)从理论上研究具有双尺度碰撞的半导体Boltzmann方程的AP格式,并将其推广到隐式/高阶格式,以捕捉宏观模型的层次结构;(2)将具有分数扩散限制的动力学方程的AP格式扩展到更广泛的范围,包括各向异性散射、简并碰撞和Levy-Fokker-Planck相互作用(将研究非经典光子在云中的传输);(3)开发求解最优传输问题的高效算法,并进行收敛分析,并将其应用于实际问题,特别是在恐慌情况下的人群动力学问题。随着人们对多尺度动力学方程和最优输运的兴趣与日俱增,这里开发的计算方法的影响将超出本提案中的特定应用。半导体器件中电子传输的动力学是物理和工程中的主要问题之一;从这一提议开发的方法将同样适用于更广泛的背景,如气体放电和多基团辐射传输。导致分数扩散的非经典输运在等离子体物理学和经济学中引起了极大的关注;它现在已经被应用于气候科学来模拟云中的光子输运,以及在犯罪学中用来模拟住宅入室盗窃的热点。最优交通已经成为图像处理、城市交通、计算机视觉等领域的有用工具;快速可并行化算法的发展将极大地推动这些领域的发展,而在人群建模中的应用对于更好地准备安全的群体性事件至关重要。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fisher information regularization schemes for Wasserstein gradient flows
- DOI:10.1016/j.jcp.2020.109449
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Wuchen Li;Jianfeng Lu;Li Wang
- 通讯作者:Wuchen Li;Jianfeng Lu;Li Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Wang其他文献
A Framework for States Co-Estimation of Hybrid Energy Storage Systems Based on Fractional-Order Theory
基于分数阶理论的混合储能系统状态联合估计框架
- DOI:
10.1109/jestpe.2021.3135019 - 发表时间:
2023-02 - 期刊:
- 影响因子:5.5
- 作者:
Mince Li;Li Wang;Yujie Wang;Xu Chen;Zonghai Chen - 通讯作者:
Zonghai Chen
Enhancing gas sensing performances and sensing mechanism at atomic and molecule level of WO3 nanoparticles by hydrogenation
通过氢化增强 WO3 纳米颗粒原子和分子水平的气敏性能和传感机制
- DOI:
10.1016/j.snb.2018.07.099 - 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Qin Du;Li Wang;Juan Yang;Junfang Liu;Yukun Yuan;Mengzhu Wang;Bin Liu;Xiao Zhang;Yan Ren;Hua Zhao;Heqing Yang - 通讯作者:
Heqing Yang
Fn14 deficiency ameliorates anti-dsDNA IgG-induced glomerular damage in SCID mice.
Fn14 缺乏可改善 SCID 小鼠中抗 dsDNA IgG 诱导的肾小球损伤。
- DOI:
10.1155/2018/1256379 - 发表时间:
2018 - 期刊:
- 影响因子:4.1
- 作者:
Jiawen Wu;Xiaoyun Min;Li Wang;Jie Yang;Ping Wang;Xingyin Liu;Yumin Xia - 通讯作者:
Yumin Xia
Hydrogen trapping sites and hydrogen-induced cracking in high strength quenching amp; partitioning (Qamp;P) treated steel
高强度淬火中的氢捕获位点和氢致裂纹
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:7.2
- 作者:
Xu Zhu;Wei Li;Hongshan Zhao;Li Wang;Xuejun Jin - 通讯作者:
Xuejun Jin
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats
睾酮增强老年雄性大鼠黑质中线粒体复合物 V 的功能
- DOI:
10.18632/aging.103265 - 发表时间:
2020-05 - 期刊:
- 影响因子:0
- 作者:
Tianyun Zhang;Yu Wang;Yunxiao Kang;Li Wang;Hui Zhao;Xiaoming Ji;Yuanxiang Huang;Wensheng Yan;Rui Cui;Guoliang Zhang;Geming Shi - 通讯作者:
Geming Shi
Li Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Wang', 18)}}的其他基金
Advanced Models and Algorithms for Large-Scale High-Dimensional Probabilistic Graph Structure Learning
大规模高维概率图结构学习的先进模型和算法
- 批准号:
2009689 - 财政年份:2020
- 资助金额:
$ 8.38万 - 项目类别:
Standard Grant
CAREER: Computational Methods for Multiscale Kinetic Systems: Uncertainty, Non-Locality, and Variational Formulation
职业:多尺度动力学系统的计算方法:不确定性、非定域性和变分公式
- 批准号:
1846854 - 财政年份:2019
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
- 批准号:
1620135 - 财政年份:2016
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
相似国自然基金
物体运动对流场扰动的数学模型研究
- 批准号:51072241
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 8.38万 - 项目类别:
Continuing Grant
Leveraging evolutionary analyses and machine learning to discover multiscale molecular features associated with antibiotic resistance
利用进化分析和机器学习发现与抗生素耐药性相关的多尺度分子特征
- 批准号:
10658686 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
AIM-AI: an Actionable, Integrated and Multiscale genetic map of Alzheimer's disease via deep learning
AIM-AI:通过深度学习绘制阿尔茨海默病的可操作、集成和多尺度遗传图谱
- 批准号:
10668829 - 财政年份:2023
- 资助金额:
$ 8.38万 - 项目类别:
Cortical microcircuit of performance monitoring: bridging multiscale neuronal activity and electrophysiological signatures in nonhuman primates
性能监测的皮层微电路:桥接非人类灵长类动物的多尺度神经元活动和电生理特征
- 批准号:
10538046 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Designing Plk1 Inhibitors through multiscale computational and experimental methods
通过多尺度计算和实验方法设计 Plk1 抑制剂
- 批准号:
10580435 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Cortical microcircuit of performance monitoring: bridging multiscale neuronal activity and electrophysiological signatures in nonhuman primates
性能监测的皮层微电路:桥接非人类灵长类动物的多尺度神经元活动和电生理特征
- 批准号:
10686867 - 财政年份:2022
- 资助金额:
$ 8.38万 - 项目类别:
Multiscale theory of synapse function with model reduction by machine learning
通过机器学习进行模型简化的突触功能多尺度理论
- 批准号:
10263653 - 财政年份:2021
- 资助金额:
$ 8.38万 - 项目类别: