Advanced Models and Algorithms for Large-Scale High-Dimensional Probabilistic Graph Structure Learning
大规模高维概率图结构学习的先进模型和算法
基本信息
- 批准号:2009689
- 负责人:
- 金额:$ 29.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the rapid development of science and technology, vast amount of data has been and is being collected in nearly all fields of science and engineering for various practical purposes, such as medical data for advancing human knowledge in diseases and treatments to save lives, image data from the solar system and beyond for human's next frontier in space, and social network data for better understanding the society and economic developments. But to make these aims realities, data must be soundly analyzed to uncover what matters. While data analysis has been around for centuries, today's data is much bigger in amount and dimension and more complex, presenting notorious challenges to modern data analysis. Often real world data is noisy and conceals inherent hidden structures that can be concisely represented by graphs that use nodes for objects/events and edges for relations between nodes. Existing approaches rely on pre- and heuristically constructible graphs show their inability in handling nowadays complicated data. This project aims to change the status quo by developing novel mathematical models and efficient computational tools for scientists, engineers, and medical professionals who can use the models and tools to unearth the hidden structures to achieve scientific discoveries previously considered impossible. The principle investigators will integrate their research activities of this project with teaching and education, and will train undergraduate and graduate students in computational mathematics, data science, and interdisciplinary studies.The proposed research will result in advanced models and efficient algorithms for graph-based machine learning. Two major distinctions from existing graph-based learning methods are (1) new models have a built-in probabilistic component that can robustly deal with high noisy data, and (2) a dynamic graph structure learning component that can uncover hidden graph structures concealed in real world data and yet not obvious enough to be pre- or heuristically constructed. The models have much wider applicability than existing graph-based learning methods because graph structure is now a variable that will be optimized over so as to yield an optimal hidden graph structure for a given data set, and the algorithms not only are capable of producing robust embeddings with simultaneously learned hidden graph structures but also will be made practical for big data through landmark and low-rank matrix approximation strategies. The proposed research will have potentially high impacts scientifically in areas where analyzing high-dimensional datasets plays critically important roles, such as data visualization, discovering structural patterns in computational biology, brain networks and other areas. The project will open up a new research direction in statistical machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着科学技术的快速发展,几乎所有科学和工程领域都已经并正在收集大量数据用于各种实际目的,例如用于提高人类对疾病和治疗方法的认识以挽救生命的医疗数据,来自太阳系和人类下一个太空前沿的图像数据,以及用于更好地了解社会和经济发展的社交网络数据。但要实现这些目标,必须对数据进行合理的分析,以揭示重要的内容。虽然数据分析已经存在了几个世纪,但今天的数据在数量和维度上都要大得多,而且更加复杂,这给现代数据分析带来了众所周知的挑战。通常,真实的世界数据是有噪声的,并且隐藏了固有的隐藏结构,这些隐藏结构可以由使用节点表示对象/事件并且使用边表示节点之间的关系的图来简洁地表示。现有的方法依赖于预先和事后可构建的图,表明它们无法处理当今复杂的数据。该项目旨在通过为科学家,工程师和医学专业人员开发新颖的数学模型和高效的计算工具来改变现状,他们可以使用模型和工具来挖掘隐藏的结构,以实现以前被认为是不可能的科学发现。主要研究人员将把本项目的研究活动与教学和教育相结合,并将在计算数学、数据科学和跨学科研究方面对本科生和研究生进行培训。拟议的研究将产生基于图的机器学习的先进模型和高效算法。与现有的基于图的学习方法的两个主要区别是:(1)新模型具有内置的概率组件,可以鲁棒地处理高噪声数据,以及(2)动态图结构学习组件,可以发现隐藏在真实的世界数据中的隐藏图结构,但还不够明显,无法预先或预先构建。这些模型比现有的基于图的学习方法具有更广泛的适用性,因为图结构现在是一个变量,将被优化,以便为给定的数据集产生最佳的隐藏图结构,并且算法不仅能够产生鲁棒的嵌入,同时学习隐藏图结构,而且还将通过地标和低秩矩阵近似策略对大数据进行实用化。拟议的研究将在分析高维数据集发挥至关重要作用的领域产生潜在的科学影响,例如数据可视化,发现计算生物学,大脑网络和其他领域的结构模式。该项目将在统计机器学习领域开辟一个新的研究方向。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A self-consistent-field iteration for MAXBET with an application to multi-view feature extraction
- DOI:10.1007/s10444-022-09929-3
- 发表时间:2022-03
- 期刊:
- 影响因子:1.7
- 作者:Xijun Ma;Chungen Shen;Li Wang;Lei-Hong Zhang;Ren-Cang Li
- 通讯作者:Xijun Ma;Chungen Shen;Li Wang;Lei-Hong Zhang;Ren-Cang Li
Highly Accurate Latouche-Ramaswami Logarithmic Reduction Algorithm for Quasi-Birth-and-Death Process
准生灭过程的高精度Latouche-Ramaswami对数约简算法
- DOI:10.4208/jms.v55n2.22.05
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Gu, Guiding;Li, Wang;Li, Ren-Cang
- 通讯作者:Li, Ren-Cang
Sprod for de-noising spatially resolved transcriptomics data based on position and image information.
- DOI:10.1038/s41592-022-01560-w
- 发表时间:2022-08
- 期刊:
- 影响因子:48
- 作者:Wang, Yunguan;Song, Bing;Wang, Shidan;Chen, Mingyi;Xie, Yang;Xiao, Guanghua;Wang, Li;Wang, Tao
- 通讯作者:Wang, Tao
On generalizing trace minimization principles
关于推广踪迹最小化原则
- DOI:10.1016/j.laa.2022.10.012
- 发表时间:2023
- 期刊:
- 影响因子:1.1
- 作者:Xin Liang;Li Wang;Lei-Hong Zhang;Ren-Cang Li
- 通讯作者:Ren-Cang Li
Deep Tensor CCA for Multi-View Learning
- DOI:10.1109/tbdata.2021.3079234
- 发表时间:2020-05
- 期刊:
- 影响因子:7.2
- 作者:Hok Shing Wong;L. xilinx Wang;R. Chan;T. Zeng
- 通讯作者:Hok Shing Wong;L. xilinx Wang;R. Chan;T. Zeng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Li Wang其他文献
II. Novel HCV NS5B polymerase inhibitors: discovery of indole C2 acyl sulfonamides.
二.
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.7
- 作者:
G. Anilkumar;O. Selyutin;S. Rosenblum;Qingbei Zeng;Yueheng Jiang;T. Chan;H. Pu;Li Wang;F. Bennett;Kevin X. Chen;C. Lesburg;J. Duca;Stephen Gavalas;Yuhua Huang;P. Pinto;M. Sannigrahi;F. Velázquez;S. Venkatraman;B. Vibulbhan;S. Agrawal;E. Ferrari;Chuan;H.‐C. Huang;N. Shih;F. George Njoroge;J. Kozlowski - 通讯作者:
J. Kozlowski
Preparation and antitumor effect of a toxin-linked conjugate targeting vascular endothelial growth factor receptor and urokinase plasminogen activator
靶向血管内皮生长因子受体和尿激酶纤溶酶原激活剂的毒素连接物的制备及其抗肿瘤作用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.2
- 作者:
Y. xiang;Qi;D. Huang;Xian;Li Wang;Yang Shi;Wenjun Zhang;Tao Yang;C. Xiao;Jianghong Wang - 通讯作者:
Jianghong Wang
Increasing hospital costs for Clostridium difficile colitis: type of hospital matters.
艰难梭菌结肠炎的医院费用增加:医院问题的类型。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:3.8
- 作者:
Li Wang;D. Stewart - 通讯作者:
D. Stewart
Testosterone enhances mitochondrial complex V function in the substantia nigra of aged male rats
睾酮增强老年雄性大鼠黑质中线粒体复合物 V 的功能
- DOI:
10.18632/aging.103265 - 发表时间:
2020-05 - 期刊:
- 影响因子:0
- 作者:
Tianyun Zhang;Yu Wang;Yunxiao Kang;Li Wang;Hui Zhao;Xiaoming Ji;Yuanxiang Huang;Wensheng Yan;Rui Cui;Guoliang Zhang;Geming Shi - 通讯作者:
Geming Shi
Contribution of the IBD5 locus to inflammatory bowel disease: a meta-analysis
IBD5 位点对炎症性肠病的贡献:荟萃分析
- DOI:
10.1007/s00439-011-0952-6 - 发表时间:
2011 - 期刊:
- 影响因子:5.3
- 作者:
Jian Wang;Xi Wang;Hong Yang;Dong Wu;Li Wang;J. Qian - 通讯作者:
J. Qian
Li Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Li Wang', 18)}}的其他基金
CAREER: Computational Methods for Multiscale Kinetic Systems: Uncertainty, Non-Locality, and Variational Formulation
职业:多尺度动力学系统的计算方法:不确定性、非定域性和变分公式
- 批准号:
1846854 - 财政年份:2019
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
- 批准号:
1903420 - 财政年份:2018
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
Multiscale computational methods in kinetic theory and optimal transport
动力学理论和最优输运中的多尺度计算方法
- 批准号:
1620135 - 财政年份:2016
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
CAREER: Scalable algorithms for regularized and non-linear genetic models of gene expression
职业:基因表达的正则化和非线性遗传模型的可扩展算法
- 批准号:
2336469 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
XTRIPODS: Algorithms and Machine Learning in Data Intensive Models
XTRIPODS:数据密集型模型中的算法和机器学习
- 批准号:
2342527 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Standard Grant
I-Corps: Using neural radiance fields (NeRF) and photogrammetry algorithms for creating 3D models
I-Corps:使用神经辐射场 (NeRF) 和摄影测量算法创建 3D 模型
- 批准号:
2412147 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Standard Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
- 批准号:
2329739 - 财政年份:2024
- 资助金额:
$ 29.01万 - 项目类别:
Standard Grant
AI innovation in the supply chain of consumer packaged-goods for recognising objects in retail execution, supply chain management and smart factories: using novel diffusion-based optimisation algorithms and diffusion-based generative models
消费包装商品供应链中的人工智能创新,用于识别零售执行、供应链管理和智能工厂中的对象:使用新颖的基于扩散的优化算法和基于扩散的生成模型
- 批准号:
10081810 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Collaborative R&D
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
- 批准号:
2239977 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Small: De Novo Protein Scaffold Filling by Combinatorial Algorithms and Deep Learning Models
合作研究:FET:小型:通过组合算法和深度学习模型从头填充蛋白质支架
- 批准号:
2307573 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Standard Grant
CAREER: Temporal Network Analysis: Models, Algorithms, and Applications
职业:时态网络分析:模型、算法和应用
- 批准号:
2236789 - 财政年份:2023
- 资助金额:
$ 29.01万 - 项目类别:
Continuing Grant