CAREER: Strongly correlated systems through the lens of topological phases
职业:通过拓扑相的视角观察强相关系统
基本信息
- 批准号:1847861
- 负责人:
- 金额:$ 57.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education towards investigating possible states of matter that can appear in solid-state materials. One of the ultimate goals of condensed matter physics is to theoretically understand and realize in the laboratory all possible phases of matter. The traditional approach to distinguishing different phases of matter from one another is based on ideas of symmetry. For instance, different solids can be classified by the distinct crystal symmetries the atoms that form them attain, e.g. cubic. A similar approach can also be applied to the many phases interacting electrons can create in materials.However, that approach is essentially based on intuition from classical physics and is in practice insufficient for describing a multitude of phases of matter enabled by quantum mechanics. In fact, that approach does not even allow one to theoretically distinguish a metal from an insulator. Even more surprising, there exist distinct insulators with the same symmetry. The central goal of this project is the study of these quantum insulators and the vast array of phenomena they host, which include surfaces on which electric conduction protected from the usually detrimental effects of material disorder exists. Such understanding could lead to general conclusions about the complex behavior of electrons in materials and could eventually provide material platforms for the building blocks of quantum computers.Beyond its own field, this project can have impact on several other areas of science, such as mathematics and high-energy physics. In addition to the research, the project includes a multipronged educational and outreach program targeting K-12, undergraduate, and graduate students. The K-12 community will be reached through participation in the NSF-funded Theorynet program that brings theorists into classrooms, and through co-organization of the Boston Physics Circle, which prepares high-school students for physics competitions. The undergraduate community will be served by direct involvement in research and by popular research presentations. A major component of this project is the training of graduate students who will be involved in all aspects of the research.TECHNICAL SUMMARYThis CAREER award supports theoretical research and education towards understanding fundamentals of strongly interacting electron systems. In the last decade there has been an impressive progress in the understanding of gapped phases of matter. Ideas of symmetry and topology play an important role in the physics of such phases. Part of the progress has been driven by the study of symmetry-protected topological (SPT) phases, which are interacting generalizations of topological insulators. Much of the interesting physics of an SPT occurs at its boundary, which is guaranteed to carry nontrivial symmetry-protected edge modes. Surprisingly, a full classification of SPT phases of bosons and, more recently, fermions with arbitrary interactions has been proposed. However, the understanding of surface states of such phases is still limited, particularly for strongly interacting SPT phases of fermions. The study of boundaries of 2D and 3D SPTs and the application of results to other problems is a major goal of this project. In particular, the PI will investigate: i) Gapped symmetric boundaries of 3D SPTs supporting anyon excitations, ii) 2D fermion SPTs and their 1D CFT boundaries, iii) Application of SPTs to derive tight electron filling constraints on the existence of (interacting) insulators in 3D, iv) SPT surface states in the presence of quenched disorder.This research will significantly advance our understanding of strongly interacting phases of matter (beyond just SPTs). In particular, it will deepen our understanding of symmetry anomalies, which may lead to the conjecture of new dualities between quantum field theories.Beyond its own field, this project can have impact on several other areas of science, such as mathematics and high-energy physics. In addition to the research, the project includes a multipronged educational and outreach program targeting K-12, undergraduate, and graduate students. The K-12 community will be reached through participation in the NSF-funded Theorynet program that brings theorists into classrooms, and through co-organization of the Boston Physics Circle, which prepares high-school students for physics competitions. The undergraduate community will be served by direct involvement in research and by popular research presentations. A major component of this project is the training of graduate students who will be involved in all aspects of the research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖支持理论研究和教育,以调查可能出现在固态材料中的物质状态。凝聚态物理学的最终目标之一是从理论上理解并在实验室中实现物质的所有可能相。区分物质不同相的传统方法是基于对称性的思想。例如,不同的固体可以通过形成它们的原子所获得的不同的晶体对称性来分类,例如立方。类似的方法也可以应用于相互作用的电子在材料中产生的许多相,但是,这种方法基本上是基于经典物理学的直觉,在实践中不足以描述量子力学所实现的物质的许多相。事实上,这种方法甚至不允许人们在理论上区分金属和绝缘体。更令人惊讶的是,存在具有相同对称性的不同绝缘体。该项目的中心目标是研究这些量子绝缘体及其所承载的大量现象,其中包括表面上的导电保护免受材料无序的通常有害影响。这样的理解可能会导致关于材料中电子复杂行为的一般性结论,并最终为量子计算机的构建提供材料平台。除了自己的领域,该项目还可能对其他几个科学领域产生影响,例如数学和高能物理。除了研究,该项目还包括一个多管齐下的教育和推广计划,目标是K-12,本科生和研究生。K-12社区将通过参与NSF资助的Theorynet计划,将理论家带入课堂,并通过波士顿物理圈的共同组织,为高中学生准备物理竞赛。本科生社区将通过直接参与研究和流行的研究报告来服务。该项目的一个主要组成部分是研究生谁将参与研究的各个方面的培训。技术总结这个职业奖支持理论研究和教育,以了解强相互作用电子系统的基本原理。在过去的十年里,在理解物质的间隙阶段方面取得了令人印象深刻的进展。对称性和拓扑学的概念在这些相的物理学中起着重要的作用。部分进展是由拓扑绝缘体的相互作用概括的拓扑保护(SPT)相的研究推动的。SPT的许多有趣的物理现象都发生在它的边界上,这是保证进行非平凡的安全保护边缘模式。令人惊讶的是,一个完整的分类SPT阶段的玻色子,最近,费米子与任意相互作用已经提出。然而,对这些相的表面态的理解仍然是有限的,特别是对于费米子的强相互作用SPT相。2D和3D SPT边界的研究以及结果在其他问题中的应用是该项目的主要目标。特别是,PI将调查:i)支持任意子激发的3D SPT的带隙对称边界,ii)2D费米子SPT和它们的1D CFT边界,iii)SPT的应用以导出对任意子激发的存在的紧密电子填充约束。3D中的(相互作用)绝缘体,iv)第四条这项研究将极大地推进我们对强相互作用相的理解,(不只是spts)。特别是,它将加深我们对对称性异常的理解,这可能导致量子场论之间新的对偶性的猜想。除了它自己的领域,这个项目可以对其他几个科学领域产生影响,如数学和高能物理。除了研究,该项目还包括一个多管齐下的教育和推广计划,目标是K-12,本科生和研究生。K-12社区将通过参与NSF资助的Theorynet计划,将理论家带入课堂,并通过波士顿物理圈的共同组织,为高中学生准备物理竞赛。本科生社区将通过直接参与研究和流行的研究报告来服务。该项目的一个主要组成部分是培训研究生,他们将参与研究的各个方面。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The extraordinary boundary transition in the 3d O(N) model via conformal bootstrap
- DOI:10.21468/scipostphys.12.6.190
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:J. Padayasi;Abijith Krishnan;M. Metlitski;I. Gruzberg;M. Meineri
- 通讯作者:J. Padayasi;Abijith Krishnan;M. Metlitski;I. Gruzberg;M. Meineri
Boundary criticality of the O(N) model in d = 3 critically revisited
- DOI:10.21468/scipostphys.12.4.131
- 发表时间:2020-09
- 期刊:
- 影响因子:5.5
- 作者:M. Metlitski
- 通讯作者:M. Metlitski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Max Metlitski其他文献
Max Metlitski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Discovery and Characterization of Strongly Correlated Topological Materials
职业:强相关拓扑材料的发现和表征
- 批准号:
2236528 - 财政年份:2023
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Revealing the Dynamics of Charge Carriers in Strongly Correlated Materials with Scanning Tunneling Potentiometry
职业:通过扫描隧道电位法揭示强相关材料中电荷载流子的动力学
- 批准号:
2239478 - 财政年份:2023
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: GHz imaging of strongly correlated and topological phenomena in moire materials
职业:莫尔材料中强相关和拓扑现象的 GHz 成像
- 批准号:
2240114 - 财政年份:2023
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Design, control, and understanding of lateral textures in strongly correlated heterostructures
职业:设计、控制和理解强相关异质结构中的横向纹理
- 批准号:
2145080 - 财政年份:2022
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Efficient and Reliable Electronic Structure Theories for Spectroscopic Properties of Strongly Correlated Systems
职业:强相关系统光谱特性的高效可靠的电子结构理论
- 批准号:
2044648 - 财政年份:2021
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Many-body expansions for strongly correlated systems
职业:强相关系统的多体展开
- 批准号:
1752612 - 财政年份:2018
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Topology, Symmetry and Disorder in Strongly Correlated Systems
职业:强相关系统中的拓扑、对称和无序
- 批准号:
1455366 - 财政年份:2015
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: "Geometry, topology and symmetry in strongly correlated materials"
职业:“强相关材料中的几何、拓扑和对称性”
- 批准号:
1455368 - 财政年份:2015
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Transport and Non-Equilibrium Physics in Strongly Correlated Systems
职业:强相关系统中的输运和非平衡物理
- 批准号:
1339564 - 财政年份:2012
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant
CAREER: Quantum Phases and Non-Equilibrium Dynamics of Strongly Correlated Photons
职业:强相关光子的量子相和非平衡动力学
- 批准号:
1055993 - 财政年份:2011
- 资助金额:
$ 57.5万 - 项目类别:
Continuing Grant