CAREER: Design, control, and understanding of lateral textures in strongly correlated heterostructures

职业:设计、控制和理解强相关异质结构中的横向纹理

基本信息

  • 批准号:
    2145080
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstract Among the biggest triumphs of 20th-century solid-state physics was the quantum-mechanical description of metals, semiconductors, and insulators. This successful model for simple materials like Silicon propelled the technological revolution after achieving control of its properties at the nanometer scale to make small devices. However, there are fundamental limits on reducing their size, prompting the exploration of new materials to render novel functionalities. Thus, major research efforts worldwide explore a new class of materials governed by more complex quantum mechanical principles, known as “quantum materials”, to advance the technological revolution. Still, control of their properties at small sizes has proven to be challenging. This project has the goal of gaining control of the electronic behavior of quantum materials at the nanometer scale. The research team uses newly discovered techniques to modify a material’s chemistry and concentration of electrons at the atomic level, which will give us control of the electronic properties with exquisite lateral spatial resolution down to the nanometer range. With this knowledge, novel device concepts with far-reaching implications will be developed. Students are trained on materials physics, device concepts, and cutting-edge experimental techniques and analysis within a framework that supports minority students. Furthermore, to broaden the impact of the research a podcast is produced that showcases the importance and successes of research on solid state physics.Technical abstract This project stems from the motivation to gain control of the fascinating electronic properties of strongly correlated transition metal oxides at the nanometer scale. These “quantum materials” are a topic of high interest because of their complex and tunable quantum phases. Soon after, it was realized that growing them epitaxially in thin films and superlattices could provide ways of tuning the properties. However, lateral control of the quantum properties has been deemed difficult. This project has two ways to laterally modify these properties with a spatial resolution at nano- to mesoscopic length scales. First, the research team uses a beam of He ions focused down to nm, which can change a material’s oxidation state and thus gain exquisite control of the ground state properties. Secondly, since layering a quantum material next to an optoelectronic semiconductor can yield a dramatic sensitivity of the former to light stimulus, the team patterns the growth of the optoelectronic layer such as to create light-sensitive areas on the heterostructure, where the quantum phases are distinct from the areas without an optoelectronic layer on top. Students involved in the research acquire knowledge of modern materials science and state-of-the-art x-ray spectroscopic tools at synchrotron facilities. The project also builds a framework to support students of minority backgrounds and produces an audio podcast that describes the successes of last-century solid state physics highlighting its real-world implications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
20世纪固体物理学最大的成就之一是对金属、半导体和绝缘体的量子力学描述。这种成功的硅等简单材料模型在实现了在纳米尺度上控制其性能以制造小型设备后推动了技术革命。然而,在减小它们的尺寸方面存在根本性的限制,这促使人们探索新材料以提供新的功能。因此,全球范围内的重大研究工作都在探索一类受更复杂量子力学原理支配的新型材料,即“量子材料”,以推进技术革命。尽管如此,在小尺寸下控制它们的性能已被证明是具有挑战性的。该项目的目标是在纳米尺度上控制量子材料的电子行为。研究小组使用新发现的技术在原子水平上修改材料的化学性质和电子浓度,这将使我们能够控制电子特性,并具有精确的横向空间分辨率,达到纳米范围。有了这些知识,将开发出具有深远影响的新型设备概念。学生接受材料物理,设备概念和尖端实验技术的培训,并在支持少数民族学生的框架内进行分析。此外,为了扩大研究的影响,制作了一个播客,展示了固态物理研究的重要性和成功。技术摘要本项目源于在纳米尺度上获得对强关联过渡金属氧化物迷人的电子性质的控制的动机。这些“量子材料”是一个高度感兴趣的话题,因为它们的复杂和可调的量子相位。不久之后,人们意识到在薄膜和超晶格中外延生长它们可以提供调整特性的方法。然而,量子特性的横向控制被认为是困难的。该项目有两种方法来横向修改这些属性与空间分辨率在纳米到介观的长度尺度。首先,研究小组使用了一束聚焦到nm的He离子,它可以改变材料的氧化态,从而获得对基态性质的精确控制。其次,由于在光电半导体旁边分层量子材料可以产生前者对光刺激的显着敏感性,因此该团队对光电层的生长进行了图案化,以便在异质结构上创建光敏区域,其中量子相与顶部没有光电层的区域不同。参与研究的学生将获得现代材料科学的知识和同步加速器设施中最先进的x射线光谱工具。该项目还建立了一个框架,以支持少数民族背景的学生,并制作了一个音频播客,描述了上个世纪固体物理学的成功,突出了其现实世界的影响。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Disentangling transport mechanisms in a correlated oxide by photoinduced charge injection
  • DOI:
    10.1103/physrevmaterials.7.l123201
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Henry Navarro;Sarmistha Das;Felipe Torres;Rourav Basak;Erbin Qiu;Nicolas M. Vargas;Pavel Lapa;Ivan K. Schuller;A. Frano
  • 通讯作者:
    Henry Navarro;Sarmistha Das;Felipe Torres;Rourav Basak;Erbin Qiu;Nicolas M. Vargas;Pavel Lapa;Ivan K. Schuller;A. Frano
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alex Frano其他文献

Alex Frano的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Applications of AI in Market Design
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研 究基金项目
基于“Design-Build-Test”循环策略的新型紫色杆菌素组合生物合成研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
在噪声和约束条件下的unitary design的理论研究
  • 批准号:
    12147123
  • 批准年份:
    2021
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Physics-Infused Reduced-Order Modeling for Control Co-Design of Morphing Aerial Autonomous Systems
职业:用于变形空中自主系统控制协同设计的物理降阶建模
  • 批准号:
    2340266
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Predictive design and control of the electrode/electrolyte interface for improved electrocatalysis
职业:电极/电解质界面的预测设计和控制以改进电催化
  • 批准号:
    2338917
  • 财政年份:
    2024
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: Learning and Leveraging Conventions in the Design of an Adaptive Haptic Shared Control for Steering a Semi-Automated Vehicle
职业:学习和利用设计用于驾驶半自动车辆的自适应触觉共享控制的惯例
  • 批准号:
    2238268
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies
职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制
  • 批准号:
    2144383
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: Bio-inspired Multi-joint Design and Control for Efficient and Lightweight Wearable Robots
职业:高效、轻型可穿戴机器人的仿生多关节设计和控制
  • 批准号:
    2046287
  • 财政年份:
    2021
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Design, Optimization, and Feedback Control of Noncontact Magnetic Manipulators
职业:非接触式磁力机械手的设计、优化和反馈控制
  • 批准号:
    1941944
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: Rational Design of Defect-Ordered Architectures in Oxygen-Deficient Perovskites to Control the Oxygen-Evolution Activity
职业:合理设计缺氧钙钛矿中的缺陷有序结构以控制析氧活性
  • 批准号:
    1943085
  • 财政年份:
    2020
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
CAREER: Control, Optimization, and Market Design for Efficient and Reliable Integration of Renewable Energy Sources in Electric Power Systems
职业:电力系统中可再生能源高效可靠集成的控制、优化和市场设计
  • 批准号:
    1752362
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Correct-By-Design Control of Traffic Flow Networks
职业:交通流网络的正确设计控制
  • 批准号:
    1749357
  • 财政年份:
    2018
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
CAREER: Process Systems Framework for the Efficient Design, Intensification and Control of Modular Energy Systems
职业:模块化能源系统的高效设计、集约化和控制的过程系统框架
  • 批准号:
    1653098
  • 财政年份:
    2017
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了