CAREER: Complex Coacervation in Cells
职业:细胞中的复杂凝聚
基本信息
- 批准号:1848388
- 负责人:
- 金额:$ 60.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical AbstractCompartmentalization allows incompatible processes to occur simultaneously and can improve efficiency. For example, having separate washer and dryer appliances allows clothes to be cleaned and dried simultaneously. While all-in-one washer/dryer appliances exist, they are less efficient, limiting the overall amount of laundry that can be done at one time. Cells use this same compartmentalization strategy to facilitate the hundreds of different processes that must take place concurrently to maintain life. However, cells must also be able to adapt to changing environments and growth conditions. To address this challenge, cells have certain compartments that responsively appear and disappear. These dynamic compartments form via a phase transition of cell contents - a process akin to liquid water freezing to form solid ice cubes. This project will engineer these dynamic compartments from the ground-up. Using inspiration from biological systems and guidance from polymer science, new dynamic compartments will be built in bacteria. A library of new biomaterials will be prepared and their phase transitions ("water freezing") will be evaluated in test tubes and living cells. These efforts will provide a fundamental understanding of how cells form these responsive compartments and will enable us to efficiently engineer new processes in cells. This project also aims to educate and train a diverse set of students for careers in science and engineering. To do this, tutoring in STEM and a short course on the "Art of Engineering" will be developed for local incarcerated students.Technical AbstractCells organize their contents from the molecular to the sub-cellular scale. The liquid-liquid phase separation of biomacromolecules has recently been appreciated as a mechanism for cellular subcompartmentalization. These phase separated compartments are termed membraneless organelles or biomolecular condensates. This biological phase separation is driven by weak, multivalent interactions and shares many features with the well-studied phase separation of synthetic macromolecules (polymers). In particular, many membraneless organelles form via complex coacervation of nucleic acids and proteins - or the liquid-liquid phase separation of oppositely charged polyelectrolytes. The goal of this project is to use the process of complex coacervation to artificially promote globular protein phase separation in E. coli. The design parameters for the in vivo formation of both single and multi-protein condensates will be determined. Model fluorescent proteins will be engineered with altered charge and charge distribution to create a library of supercharged protein polyions. The phase behavior of these engineered proteins with oppositely charged biomolecules (nucleic acids, proteins) will be characterized in vitro and in vivo. The insights from these experiments will enable the creation of synthetic membraneless organelles with potential applications in metabolic engineering and synthetic biology. These research objectives will be coupled with educational goals to improve the scientific and engineering literacy of incarcerated students. Following STEM tutoring of students inside via existing outreach programs, a short course will be created on the "Art of Engineering" to introduce engineering concepts to these students and generate excitement about potential careers in STEM.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性AbstractCompartmentalization允许不兼容的过程同时发生,可以提高效率。例如,具有单独的洗衣机和烘干机设备允许同时清洁和烘干衣服。虽然存在一体式洗衣机/烘干机设备,但它们效率较低,限制了一次可以完成的洗衣总量。细胞使用这种相同的区室化策略来促进数百个必须同时发生以维持生命的不同过程。然而,细胞还必须能够适应不断变化的环境和生长条件。为了应对这一挑战,细胞具有某些隔室,这些隔室会相应地出现和消失。这些动态隔室通过细胞内容物的相变形成-一个类似于液态水冻结形成固体冰块的过程。该项目将从地面开始设计这些动态隔间。利用生物系统的灵感和聚合物科学的指导,将在细菌中构建新的动态隔间。将准备一个新的生物材料库,并将在试管和活细胞中评估它们的相变(“水冻结”)。这些努力将为细胞如何形成这些反应区室提供基本的理解,并使我们能够有效地设计细胞中的新过程。该项目还旨在教育和培训一批不同的学生从事科学和工程职业。为此,将为当地被监禁的学生开设STEM辅导和“工程艺术”短期课程。生物大分子的液-液相分离最近被认为是细胞亚区室化的一种机制。这些相分离的隔室被称为无膜细胞器或生物分子凝聚物。这种生物相分离是由弱的多价相互作用驱动的,并且与合成大分子(聚合物)的充分研究的相分离具有许多特征。特别是,许多无膜细胞器通过核酸和蛋白质的复合凝聚或带相反电荷的聚电解质的液-液相分离形成。本项目的目的是利用复凝聚过程人工促进E.杆菌将确定用于在体内形成单一和多蛋白质缩合物的设计参数。模型荧光蛋白将被改造成具有改变的电荷和电荷分布,以创建超电荷蛋白聚离子库。这些工程蛋白质与带相反电荷的生物分子(核酸,蛋白质)的相行为将在体外和体内进行表征。从这些实验中获得的见解将使合成无膜细胞器的创造在代谢工程和合成生物学中具有潜在的应用。这些研究目标将与教育目标相结合,以提高被监禁学生的科学和工程素养。在通过现有的外展计划对学生进行STEM辅导之后,将创建一个关于“工程艺术”的短期课程,向这些学生介绍工程概念,并激发他们对STEM潜在职业的兴奋。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Formation of Biomolecular Condensates in Bacteria by Tuning Protein Electrostatics.
- DOI:10.1021/acscentsci.0c01146
- 发表时间:2020-12-23
- 期刊:
- 影响因子:18.2
- 作者:Yeong V;Werth EG;Brown LM;Obermeyer AC
- 通讯作者:Obermeyer AC
Bioengineering textiles across scales for a sustainable circular economy
- DOI:10.1016/j.chempr.2021.10.012
- 发表时间:2021-11
- 期刊:
- 影响因子:23.5
- 作者:T. Schiros;Christopher Z Mosher;Yuncan Zhu;T. Bina;Valentina Gomez;Chui Lian Lee;Helen H. Lu;Allie C. Obermeyer
- 通讯作者:T. Schiros;Christopher Z Mosher;Yuncan Zhu;T. Bina;Valentina Gomez;Chui Lian Lee;Helen H. Lu;Allie C. Obermeyer
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allie Obermeyer其他文献
Allie Obermeyer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allie Obermeyer', 18)}}的其他基金
RoL: EAGER: DESYN-C3 Enzyme cascades in synthetic membraneless organelles
RoL:EAGER:DESYN-C3 合成无膜细胞器中的酶级联
- 批准号:
1844149 - 财政年份:2018
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
相似国自然基金
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
- 批准号:31971055
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
- 批准号:31872651
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
- 批准号:31860044
- 批准年份:2018
- 资助金额:37.0 万元
- 项目类别:地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
- 批准号:81703747
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
- 批准号:31670290
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
延伸子复合物(Elongator complex)的翻译调控作用
- 批准号:31360023
- 批准年份:2013
- 资助金额:51.0 万元
- 项目类别:地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
- 批准号:81370445
- 批准年份:2013
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
- 批准号:
2347345 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
CAREER: New Pericyclic Methodologies for the Convergent Synthesis of Complex Ring Systems
职业:复杂环系收敛合成的新周环方法
- 批准号:
2340210 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
- 批准号:
2340926 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Continuing Grant
Collaborative Research: Liquid Crystal-Templated Chemical Vapor Polymerization of Complex Nanofiber Networks
合作研究:复杂纳米纤维网络的液晶模板化学气相聚合
- 批准号:
2322900 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
- 批准号:
2323917 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
- 批准号:
2315532 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Standard Grant
Deep imaging for understanding molecular processes in complex organisms
深度成像用于了解复杂生物体的分子过程
- 批准号:
LE240100091 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
- 批准号:
EP/Y015878/1 - 财政年份:2024
- 资助金额:
$ 60.47万 - 项目类别:
Fellowship