Geometric Optimal Control for Locomotion of Biologically Inspired Robotic Systems

仿生机器人系统运动的几何优化控制

基本信息

  • 批准号:
    1400256
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Animals, and their analogous biologically-inspired robots out-perform traditional robots (e.g., cars, planes, boats) in many environments and for many tasks. Unfortunately, control of biologically-inspired robots differs from that of traditional robots, preventing their adoption. Achieving control of biologically-inspired robots with the same ease as traditional robots would markedly transform the field of robotics. The main challenge is that locomotion requires time-varying periodic control inputs, known as gaits, to achieve movement. The discrete nature of the gaits and their time-varying structure means that standard control strategies do not apply. It is critical that this class of robots be as simple to control as traditional robots if widespread adoption is to occur. This award supports fundamental research into a mathematical framework that will lead to simpler formulations for control of these robots. The simpler formulation will be of value to society as biologically-inspired robots are envisioned to be of great practical use for a variety of robotic application domains, such as search and rescue, defense, surveillance, and plant integrity inspection. Furthermore, biologically-inspired robots are quite popular with youth and the public. We will capitalize on this appeal to increase and broaden participation in engineering and engineering research.Biologically-inspired robotic systems are typically nonholonomic systems that require time-varying control inputs, making optimal control-based design of trajectories challenging. Further, these systems rely on families of parametrizable, time-varying control inputs, called gaits, to generate movement. Gaits are disjoint controls, in that applying one gait precludes the use of another. Thus, not only must the control input be time-varying, but the reachability properties are gait-dependent and may require switches of control modes for some navigation goals. On account of these challenges, the development of a framework for trajectory generation and planning of these systems is still an open problem. Drawing on concepts from differential geometry, geometric mechanics, and averaging theory to exploit the geometric and temporal symmetries of these robotic systems, a reduced optimal control formulation will be derived. The connection of these concepts to multi-mode, multi-dimensional control systems will be delineated to resolve the switched, optimal control problem associated to systems with multiple gait strategies. To generate initial trajectory estimates for the optimal control solver, we will specialize a kino-dynamic path planning algorithm to incorporate the geometric and multi-gait properties of biologically-inspired robotic systems.
动物和它们类似的生物启发机器人的性能优于传统机器人(例如,汽车、飞机、船)在许多环境中和用于许多任务。 不幸的是,生物启发机器人的控制与传统机器人的控制不同,阻止了它们的采用。像传统机器人一样轻松控制生物启发的机器人将显著改变机器人领域。 主要的挑战是运动需要时变的周期性控制输入,称为步态,以实现运动。 步态的离散性及其时变结构意味着标准控制策略不适用。 如果要广泛采用,这类机器人必须像传统机器人一样简单控制,这一点至关重要。 该奖项支持对数学框架的基础研究,这将导致更简单的公式来控制这些机器人。 更简单的公式将对社会有价值,因为生物启发的机器人被设想为在各种机器人应用领域具有很大的实际用途,例如搜索和救援,防御,监视和工厂完整性检查。此外,受生物启发的机器人受到年轻人和公众的欢迎。我们将利用这一吸引力,以增加和扩大参与工程和工程研究。生物启发的机器人系统是典型的非完整系统,需要随时间变化的控制输入,使基于最优控制的轨迹设计具有挑战性。 此外,这些系统依赖于可参数化的、随时间变化的控制输入(称为步态)来产生运动。步态是不相交的控制,因为应用一种步态排除了另一种步态的使用。 因此,不仅控制输入必须是时变的,而且可达性属性是步态相关的,并且对于某些导航目标可能需要切换控制模式。由于这些挑战,这些系统的轨迹生成和规划的框架的发展仍然是一个悬而未决的问题。 利用微分几何,几何力学和平均理论的概念,利用这些机器人系统的几何和时间对称性,减少最优控制配方将被导出。这些概念的多模式,多维控制系统的连接将划定解决切换,最优控制问题与多个步态策略的系统。为了生成最优控制求解器的初始轨迹估计,我们将专门设计一种kino-dynamic路径规划算法,以结合生物启发机器人系统的几何和多步态特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Patricio Vela其他文献

A concurrent learning approach to monocular vision range regulation of leader/follower systems
  • DOI:
    10.1007/s10514-024-10178-0
  • 发表时间:
    2024-10-17
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Luisa Fairfax;Patricio Vela
  • 通讯作者:
    Patricio Vela
Vision-Based Tower Crane Tracking for Understanding Construction Activity
基于视觉的塔式起重机跟踪,用于了解施工活动
  • DOI:
    10.1061/(asce)cp.1943-5487.0000242
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Jun Yang;Patricio Vela;Jochen Teizer;Zhongke Shi
  • 通讯作者:
    Zhongke Shi
First ovulation after childbirth: the effect of breast-feeding.
产后第一次排卵:母乳喂养的影响。
  • DOI:
    10.1016/0002-9378(72)90866-6
  • 发表时间:
    1972
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Alfredo Perez;Alfredo Perez;Alfredo Perez;Patricio Vela;Patricio Vela;Patricio Vela;George Masnick;George Masnick;George Masnick;Robert G. Potter;Robert G. Potter;Robert G. Potter
  • 通讯作者:
    Robert G. Potter

Patricio Vela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Patricio Vela', 18)}}的其他基金

Kickstarting Advances in Assistive and Rehabilitative Technologies
推动辅助和康复技术的进步
  • 批准号:
    2125017
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
FW-HTF-RM: Collaborative Research: Supervise It! Optimizing Intelligent Robot Integration Through Feedback to Workers and Supervisors
FW-HTF-RM:协作研究:监督!
  • 批准号:
    2026611
  • 财政年份:
    2020
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
S&AS:FND:Viewer-Centric Spatial Reasoning and Learning for Safe Autonomous Navigation
S
  • 批准号:
    1849333
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
RI:Small:Exploiting the Evolving Conditioning of Bundle Adjustment for Robust, Adaptive Simultaneous Localization and Mapping
RI:Small:利用束调整的演化条件实现鲁棒、自适应同步定位和绘图
  • 批准号:
    1816138
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
A Geometric Control Framework for Enabling Behavior-Based Planning and Locomotion of Undulatory Robots
用于实现基于行为的波动机器人规划和运动的几何控制框架
  • 批准号:
    1562911
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
A Shared Autonomy Approach to Robotic Arm Assistance with Daily Activities
机械臂协助日常活动的共享自主方法
  • 批准号:
    1605228
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CPS: Synergy: Learning to Walk - Optimal Gait Synthesis and Online Learning for Terrain-Aware Legged Locomotion
CPS:协同:学习行走 - 地形感知腿部运动的最佳步态合成和在线学习
  • 批准号:
    1544857
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Automated Vision-Based Sensing for Site Operations Analysis
用于现场操作分析的基于视觉的自动化传感
  • 批准号:
    1030472
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Reciprocal Reconstruction and Recognition for Modeling of Constructed Facilities
已建设施建模的相互重构与识别
  • 批准号:
    1031329
  • 财政年份:
    2010
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Observer Design for Intelligent Visual Tracking
职业:智能视觉跟踪的观察者设计
  • 批准号:
    0846750
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
  • 批准号:
    2226936
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Cooperative multi agent optimal adaptive control of large degree of freedom manipulators for an interdependent collaborative task
用于相互依赖的协作任务的大自由度机械臂的协作多智能体最优自适应控制
  • 批准号:
    2890822
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Optimal Transport Protocols for Biomolecular Machinery - Approaching the Principle Limits of Control of Microscopic Systems
生物分子机械的最佳传输协议 - 接近微观系统控制的原理极限
  • 批准号:
    23H01136
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On the reliability of computational algorithms in optimal control methods using highly expressive non-differentiable functions
使用高表达不可微函数的最优控制方法中计算算法的可靠性
  • 批准号:
    23K13359
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mathematical modeling for optimal control of BK virus infection in kidney transplant recipients
肾移植受者 BK 病毒感染最佳控制的数学模型
  • 批准号:
    10741703
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
FET: Small: An Integrated Framework for the Optimal Control of Open Quantum Systems --- Theory, Quantum Algorithms, and Applications
FET:小型:开放量子系统最优控制的集成框架 --- 理论、量子算法和应用
  • 批准号:
    2312456
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Optimal control approach to machine learning with physical explainability
具有物理可解释性的机器学习最优控制方法
  • 批准号:
    23H01436
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of cluster-based reduced-order model for optimal feedback control of dynamic stall flow
开发基于集群的动态失速流最优反馈控制降阶模型
  • 批准号:
    22KJ0183
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SCH: Spine-Hip Exoskeletons with Learning-Based Optimal Control for Low Back Pain Alleviation
SCH:具有基于学习的最佳控制的脊柱-髋部外骨骼,可缓解腰痛
  • 批准号:
    10816884
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
RI: Small: Collaborative Research: Evolutionary Approach to Optimal Morphology and Control of Transformable Soft Robots
RI:小型:协作研究:可变形软机器人的最佳形态和控制的进化方法
  • 批准号:
    2325491
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了