CRII: SHF: Towards a Cognizant Virtual Software Modeling Assistant using Model Clones

CRII:SHF:使用模型克隆实现认知虚拟软件建模助手

基本信息

  • 批准号:
    1849632
  • 负责人:
  • 金额:
    $ 16.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Software is growing increasingly omnipresent in society. Correspondingly, software quality, which includes both security and reliability, is more important than ever. Software failures can cause significant problems to both individuals and national economies. Security is also a paramount societal concern. This research project helps address quality by improving software modeling, a critical stage in software development where engineers specify what the software does and how it works. It takes the first step in allowing engineers to leverage knowledge from data in the form of others' experiences and best practices to incorporate established models for use in their software. This project tackles the fundamental issues of how to 1) gather this data properly, 2) derive useful insights about that data, and 3) best present these insights and suggestions to engineers. By providing this assistance and information, engineers can make better-informed decisions, thus yielding higher quality software for all society. In addition to helping engineers, software modeling is an important aspect of the STEM curriculum, including computer science, software engineering, and other engineering disciplines. Instructors can utilize the approaches and tools derived from this award as a teaching tool by helping students think critically about design decisions. This will yield better computer scientists and engineers who are more comfortable and versed in formal software modeling.Model-driven engineering (MDE) is an established formal methodology for building large-scale secure quality software systems. This award will improve that quality by realizing a cognizant virtual software-modeling assistant to improve software design and MDE. This project uses model-clone detection to analyze models during development, finds similar models from the same domain and/or best practices, and treats those similar models as training data to reason about in order to suggest model additions and modifications to users. Such assistance will yield similar benefits to those afforded by analogous source-code approaches based on past usage statistics. This involves an exploratory investigation to develop a new approach and prototype virtual software-modeling assistant using an established model clone detector. In the first phase of this research, the investigator will build a prototype with the capability to analyze incomplete models being constructed/extended by engineers to suggest completed models for insertion based on similarity to those from the same domain and/or best practices. In the second phase, the investigator will create an assistant that produces granular suggestions based on analyzing similar models, and presents options to engineers of operations they may want to do next based on those operations' prevalence in the knowledge base formed by those similar models. This research's insights and data will provide the foundation necessary to build more advanced modeling assistants, conduct user studies and educational assessments of the approach, and help lay a foundation for the cognification of modeling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
软件在社会中越来越普遍。相应地,包括安全性和可靠性在内的软件质量比以往任何时候都更加重要。软件故障可能会对个人和国家经济造成重大问题。安全也是一个最重要的社会问题。这个研究项目通过改进软件建模来帮助解决质量问题,软件建模是软件开发的一个关键阶段,工程师在这个阶段指定软件做什么以及如何工作。 它迈出了第一步,允许工程师以其他人的经验和最佳实践的形式利用数据中的知识,将已建立的模型纳入其软件中。该项目解决了以下基本问题:1)如何正确收集这些数据; 2)如何获得有关这些数据的有用见解; 3)如何将这些见解和建议最好地呈现给工程师。通过提供这些帮助和信息,工程师可以做出更明智的决策,从而为整个社会提供更高质量的软件。 除了帮助工程师,软件建模是STEM课程的一个重要方面,包括计算机科学,软件工程和其他工程学科。教师可以利用从这个奖项获得的方法和工具作为教学工具,帮助学生批判性地思考设计决策。 这将产生更好的计算机科学家和工程师谁是更舒适和精通正式的软件modeling.Model-driven工程(MDE)是一个建立正式的方法,用于构建大规模的安全质量的软件系统。 该奖项将通过实现一个认知的虚拟软件建模助手来提高软件设计和MDE的质量。 该项目使用模型克隆检测在开发过程中分析模型,从相同的域和/或最佳实践中找到相似的模型,并将这些相似的模型作为训练数据进行推理,以便向用户建议模型添加和修改。这种协助将产生类似的好处,那些提供了类似的源代码方法的基础上,过去的使用统计。这涉及到一个探索性的调查,开发一种新的方法和原型虚拟软件建模助手使用一个既定的模型克隆检测器。 在本研究的第一阶段,研究人员将建立一个原型,该原型能够分析工程师正在构建/扩展的不完整模型,以根据与相同领域和/或最佳实践的相似性建议插入完整模型。 在第二阶段,研究人员将创建一个助手,该助手基于分析类似模型产生粒度建议,并根据这些操作在由这些类似模型形成的知识库中的流行程度,向工程师提供他们下一步可能想要做的操作的选项。 该研究的见解和数据将为构建更先进的建模助手提供必要的基础,进行用户研究和方法的教育评估,并帮助为建模的认知奠定基础。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulink Model Transformation for Backwards Version Compatibility
Simulink 模型转换以实现向后版本兼容性
Towards a cognizant virtual software modeling assistant using model clones
使用模型克隆实现认知虚拟软件建模助手
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Stephan其他文献

Challenges in Teaching Modeling in Agile Software Engineering Courses
敏捷软件工程课程中建模教学的挑战
srcClone: Detecting Code Clones via Decompositional Slicing
srcClone:通过分解切片检测代码克隆
Realization of a Machine Learning Domain Specific Modeling Language: A Baseball Analytics Case Study
机器学习领域特定建模语言的实现:棒球分析案例研究
  • DOI:
    10.5220/0007245800130024
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaan Koseler;Kelsea McGraw;Matthew Stephan
  • 通讯作者:
    Matthew Stephan
Power defense: a serious game for improving diabetes numeracy
强力防御:提高糖尿病计算能力的严肃游戏
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ereny Bassilious;Aaron DeChamplain;I. McCabe;Matthew Stephan;B. Kapralos;F. Mahmud;A. Dubrowski
  • 通讯作者:
    A. Dubrowski
Model clone detection and its role in emergent model pattern mining
模型克隆检测及其在紧急模型模式挖掘中的作用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Stephan;E. J. Rapos
  • 通讯作者:
    E. J. Rapos

Matthew Stephan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
  • 批准号:
    2312617
  • 财政年份:
    2023
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
  • 批准号:
    2312616
  • 财政年份:
    2023
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
  • 批准号:
    2312758
  • 财政年份:
    2023
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
CCF: SHF: CORE: Small: Towards Systematic Quality Control of Physically Unclonable Functions (PUFs)
CCF:SHF:CORE:小型:迈向物理不可克隆功能(PUF)的系统质量控制
  • 批准号:
    2244479
  • 财政年份:
    2023
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
  • 批准号:
    2211589
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Towards Robust Deep Learning Computing on GPUs
合作研究:SHF:小型:在 GPU 上实现稳健的深度学习计算
  • 批准号:
    2301940
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Towards More Human-like AI Models of Source Code
合作研究:SHF:Medium:迈向更人性化的 AI 源代码模型
  • 批准号:
    2211429
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Towards More Human-like AI Models of Source Code
合作研究:SHF:Medium:迈向更人性化的 AI 源代码模型
  • 批准号:
    2211428
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing
协作研究:SHF:小型:迈向可变性感知软件分析和测试
  • 批准号:
    2211588
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
SHF: Small: Towards High Performance Serverless Edge Computing for Data-intensive Applications
SHF:小型:面向数据密集型应用程序的高性能无服务器边缘计算
  • 批准号:
    2230620
  • 财政年份:
    2022
  • 资助金额:
    $ 16.19万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了