CRII: SHF: Ultra-fast Simulation and Automated Design of Silicon Photonics Devices

CRII:SHF:硅光子器件的超快速仿真和自动化设计

基本信息

  • 批准号:
    1849965
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Integrated circuits are responsible for most of modern technology today. While electronic circuits have been sufficient for advancing technology until this point, the challenging computational, energy-efficiency, and communication demands of the 21st century require a radically new paradigm. This can be found in silicon photonics, an emerging technology which allows the manipulation of light by integrating optical devices on the same chips as electrical circuits. The ability to control light on a chip has already led to important technological advancements, including ultra-high-speed wired and wireless communications, lens-free imaging, Light Detection and Ranging (LiDAR), gyroscopes without moving parts, gas sensors, and label-free biosensors. This project seeks to solve device simulation and design difficulties which currently severely limit the potential of silicon photonics, ushering in a new generation of chips with unprecedented levels of performance and design complexity, and paving the way for on-chip optical computation and ultra-fast, efficient communication. Leveraging mathematical and computational modeling, this research will engage and train graduate and undergraduate students in multi-disciplinary fields spanning from mathematics to computer engineering and applied physics. Another objective is to engage high school students from local schools interested in STEM, with a specific focus on women and underrepresented groups. This project will spur the growth of powerful new design tools for silicon photonics which will allow human designers to maximize their efforts designing at the system level, rather than at the device level, allowing them to develop highly intricate systems.Due to their large size, small features, and complexity, photonic devices are very challenging to numerically simulate, and the lack of analytical or even approximate solutions further complicates the design of new devices. Advanced numerical techniques based on boundary integral equation methods will be developed in this project and applied to model photonic devices. Unlike present approaches which necessitate volumetric meshing of devices to be simulated, the project's approach only requires meshing the surfaces or boundaries of devices, leading to a significant reduction of problem size and dramatic increases in speed and CPU and memory efficiency. High-order polynomial functions will be used to approximate the electromagnetic unknowns, leading to an almost exponential rate of convergence to the exact solution with respect to the mesh size, in contrast to present methods which can only achieve linear or quadratic convergence. An optimization framework will be designed and implemented which will be capable of automatically designing new, ready-to-fabricate photonic devices without any human intervention other than specification of desired functionality and performance. The efficacy of the new simulation and optimization platform will then be demonstrated by utilizing the framework to design and evaluate real silicon photonic devices such as wavelength demultiplexers, power splitters, and grating couplers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
集成电路是当今大多数现代技术的基础。虽然电子电路已经足以推动技术的发展,但世纪充满挑战的计算、能源效率和通信需求需要一种全新的范式。这可以在硅光子学中找到,这是一种新兴技术,通过将光学器件集成在与电路相同的芯片上来控制光。在芯片上控制光的能力已经带来了重要的技术进步,包括超高速有线和无线通信、无透镜成像、光探测和测距(LiDAR)、无移动部件的陀螺仪、气体传感器和无标签生物传感器。该项目旨在解决目前严重限制硅光子学潜力的器件模拟和设计难题,推出具有前所未有的性能和设计复杂性的新一代芯片,并为片上光学计算和超快速高效通信铺平道路。利用数学和计算建模,这项研究将从事和培养研究生和本科生在多学科领域,从数学到计算机工程和应用物理。另一个目标是吸引当地学校对STEM感兴趣的高中生,特别关注妇女和代表性不足的群体。该项目将促进硅光子学的强大新设计工具的发展,这将使人类设计师能够最大限度地在系统级而不是器件级进行设计,从而使他们能够开发高度复杂的系统。由于光子器件尺寸大,功能小,复杂性高,数值模拟非常具有挑战性,并且缺乏分析或甚至近似的解决方案进一步使新装置的设计复杂化。本计画将发展以边界积分方程法为基础的先进数值技术,并应用于光子元件的模拟。与目前的方法,需要体积网格化的设备进行模拟,该项目的方法只需要网格化的表面或边界的设备,导致问题的大小显着减少,并显着提高速度和CPU和内存的效率。高阶多项式函数将被用来近似的电磁未知数,导致几乎指数收敛速度的精确解的网格大小,在目前的方法,只能实现线性或二次收敛。一个优化框架将被设计和实施,这将是能够自动设计新的,准备制造的光子器件,而没有任何人为干预以外的规范所需的功能和性能。新的模拟和优化平台的有效性将通过利用该框架来设计和评估真实的硅光子器件(如波长解复用器、功率分配器和光栅耦合器)来证明。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Planewave Density Interpolation Methods for the EFIE on Simple and Composite Surfaces
简单和复合曲面上 EFIE 的平面波密度插值方法
  • DOI:
    10.1109/tap.2020.3008616
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Perez-Arancibia, Carlos;Turc, Catalin;Faria, Luiz M.;Sideris, Constantine
  • 通讯作者:
    Sideris, Constantine
Foundry-fabricated grating coupler demultiplexer inverse-designed via fast integral methods
通过快速积分方法逆向设计铸造厂制造的光栅耦合器解复用器
  • DOI:
    10.1038/s42005-022-00839-w
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sideris, Constantine;Khachaturian, Aroutin;White, Alexander D.;Bruno, Oscar P.;Hajimiri, Ali
  • 通讯作者:
    Hajimiri, Ali
Fast Inverse Design of 3D Nanophotonic Devices Using Boundary Integral Methods
  • DOI:
    10.1021/acsphotonics.2c01072
  • 发表时间:
    2022-10-24
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Garza, Emmanuel;Sideris, Constantine
  • 通讯作者:
    Sideris, Constantine
H-Matrix Accelerated Direct Matrix Solver using Chebyshev-based Nyström Boundary Integral Equation Method
使用基于切比雪夫的 Nyström 边界积分方程方法的 H 矩阵加速直接矩阵求解器
Nonlinear nanophotonic devices in the ultraviolet to visible wavelength range
  • DOI:
    10.1515/nanoph-2020-0231
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    He, Jinghan;Chen, Hong;Armani, Andrea M.
  • 通讯作者:
    Armani, Andrea M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantine Sideris其他文献

Ultra-fast Simulation and Inverse Design of Metallic Antennas
金属天线的超快速仿真与逆向设计
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifei Zheng;Constantine Sideris
  • 通讯作者:
    Constantine Sideris
A High-order Nyström-based Scheme Explicitly Enforcing Surface Density Continuity for the Electric Field Integral Equation
基于高阶 Nyström 的电场积分方程显式强制表面密度连续性方案
  • DOI:
    10.48550/arxiv.2403.04334
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Hu;Constantine Sideris
  • 通讯作者:
    Constantine Sideris
A 5.2-to-13GHz class-AB CMOS power amplifier with a 25.2dBm peak output power at 21.6% PAE
A%205.2-to-13GHz%20class-AB%20CMOS%20power%20amplifier%20with%20a%2025.2dBm%20peak%20output%20power%20at%2021.6%%20PAE
High order-accurate solution of scattering integral equations with unbounded solutions at corners
具有拐角处无界解的散射积分方程的高阶精确解
  • DOI:
    10.1016/j.jcp.2025.114213
  • 发表时间:
    2025-10-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Constantine Sideris;Davit Aslanyan;Oscar P. Bruno
  • 通讯作者:
    Oscar P. Bruno
An integrated magnetic spectrometer for multiplexed biosensing
用于多重生物传感的集成磁谱仪

Constantine Sideris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantine Sideris', 18)}}的其他基金

CAREER: Automated Synthesis of Electromagnetic Devices for Nanophotonic and Radio Frequency Applications
职业:用于纳米光子和射频应用的电磁器件的自动合成
  • 批准号:
    2047433
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
ASCENT: Ultra-high Throughput Neural Recording using Flexible, Polymer-based Shanks as Terahertz Dielectric Waveguides
ASCENT:使用柔性聚合物柄作为太赫兹介电波导进行超高吞吐量神经记录
  • 批准号:
    2133138
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: SHF: Error Resilient Asynchronous Architecture for Ultra-Low Power Energy Harvesting IoT Applications
CRII:SHF:适用于超低功耗能量收集物联网应用的容错异步架构
  • 批准号:
    2153373
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: THz surface Wave Based Interconnect Technology for Ultra-fast Data Transfer
SHF:小型:基于太赫兹表面波的互连技术,用于超快速数据传输
  • 批准号:
    1909937
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Redesigning the System Architecture for Ultra-High Density Data Storage
SHF:小型:重新设计超高密度数据存储的系统架构
  • 批准号:
    1910958
  • 财政年份:
    2019
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Bio-inspired ultra-broadband RF scene analysis
SHF:小型:仿生超宽带射频场景分析
  • 批准号:
    1525162
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Platforms
SHF:中:协作研究:移动平台的超响应架构
  • 批准号:
    1623834
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Variation "Immune System" for Ultra Low Power Systems-on-Chip
SHF:小型:超低功耗片上系统的“免疫系统”变体
  • 批准号:
    1422854
  • 财政年份:
    2014
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Ultra Low Power Neuromorphic Computing with Spin-devices
SHF:小型:使用自旋设备的超低功耗神经形态计算
  • 批准号:
    1320808
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Plattorm
SHF:媒介:协作研究:移动平台的超响应架构
  • 批准号:
    1161505
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Ultra-Responsive Architectures for Mobile Platforms
SHF:中:协作研究:移动平台的超响应架构
  • 批准号:
    1161681
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Pipelined and wireless ultra-low power straintronics: An acoustically clocked combinational and sequential nanomagnetic architecture
SHF:小型:管道式和无线超低功耗应变电子学:声学时钟组合和顺序纳米磁性架构
  • 批准号:
    1216614
  • 财政年份:
    2012
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了