CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
基本信息
- 批准号:1850240
- 负责人:
- 金额:$ 17.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2019-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to addresses challenges in machine learning for intelligent physical systems that interact with one another. The approach is to explore Reinforcement Learning (RL) strategies, where systems are rewarded when behaving correctly, for interacting physical systems when the systems with which they interact may react in inconsistent ways. The results are expected to contribute to a new self-learning intelligent control framework, where the systems under design can decide how to interact with their inconsistent neighbors in a way that will improve how they learn. This will advance reinforcement learning for networked cyber-physical systems (CPS) which can have emergent behaviors when they interact (for example, unmanned aerial systems) and are frequently inconsistent due to uncertainties in their distributed nature (for example, the smart grid).Three major fundamental contributions to the scientific field are expected. First, a new distributed RL algorithm will learn suitable reward functions automatically without requiring external supervisions. This work will relax human efforts and scale RL algorithms to more complex environment. Second, novel transfer learning-based RL architectures will be designed by reusing past knowledge from multiple sources. This design will further accelerate learning process in networked CPS. Third, this proposed method will be implemented on a multi-robot testbed to advance the learning in robot applications. Outreach and dissemination plans cultivate the scientific curiosity of K-12 students, and students from underrepresented groups, and motivate their interests in Science, Technology, Engineering, and Math (STEM) programs. Furthermore, the integration of the project's cutting-edge research results into new courses will aid retention of current STEM students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是解决相互交互的智能物理系统的机器学习挑战。该方法是探索强化学习(RL)策略,当系统与物理系统交互时,当与之交互的系统可能以不一致的方式做出反应时,系统会在行为正确时获得奖励。研究结果预计将有助于建立一个新的自学习智能控制框架,在该框架中,正在设计的系统可以决定如何与不一致的邻居进行交互,从而改善它们的学习方式。 这将推进网络信息物理系统 (CPS) 的强化学习,这些系统在交互时可能会出现突发行为(例如,无人机系统),并且由于其分布式性质的不确定性而经常出现不一致(例如,智能电网)。预计会对科学领域做出三大基本贡献。首先,新的分布式强化学习算法将自动学习合适的奖励函数,而不需要外部监督。这项工作将放松人类的努力,并将强化学习算法扩展到更复杂的环境。其次,将通过重用来自多个来源的过去知识来设计新颖的基于迁移学习的强化学习架构。该设计将进一步加速网络 CPS 的学习过程。第三,该方法将在多机器人测试台上实施,以促进机器人应用的学习。外展和传播计划培养 K-12 学生和弱势群体学生的科学好奇心,并激发他们对科学、技术、工程和数学 (STEM) 项目的兴趣。此外,将该项目的前沿研究成果整合到新课程中将有助于保留现有的 STEM 学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deep Deterministic Policy Gradients with Transfer Learning Framework in StarCraft Micromanagement
- DOI:10.1109/eit.2019.8833742
- 发表时间:2019-05
- 期刊:
- 影响因子:0
- 作者:Dong Xie;Xiangnan Zhong
- 通讯作者:Dong Xie;Xiangnan Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiangnan Zhong其他文献
Fuzzy-Based Goal Representation Adaptive Dynamic Programming
基于模糊的目标表示自适应动态规划
- DOI:
10.1109/tfuzz.2015.2505327 - 发表时间:
2016-10 - 期刊:
- 影响因子:0
- 作者:
Yufei Tang;Haibo He;Zhen Ni;Xiangnan Zhong;Dongbin Zhao;Xin Xu - 通讯作者:
Xin Xu
Adaptive Dynamic Programming for Robust Regulation and Its Application to Power Systems
鲁棒调节的自适应动态规划及其在电力系统中的应用
- DOI:
10.1109/tie.2017.2782205 - 发表时间:
2018-07 - 期刊:
- 影响因子:7.7
- 作者:
Xiong Yang;Haibo He;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
A fast federated reinforcement learning approach with phased weight-adjustment technique
一种具有分阶段权重调整技术的快速联邦强化学习方法
- DOI:
10.1016/j.neucom.2025.129550 - 发表时间:
2025-04-14 - 期刊:
- 影响因子:6.500
- 作者:
Yiran Pang;Zhen Ni;Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Comparative studies of power grid security with network connectivity and power flow information using unsupervised learning
使用无监督学习的网络连接和潮流信息的电网安全比较研究
- DOI:
10.1109/ijcnn.2016.7727542 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Shiva Poudel;Z. Ni;Xiangnan Zhong;Haibo He - 通讯作者:
Haibo He
On-Line Adaptive Dynamic Programming for Feedback Control
- DOI:
10.23860/diss-zhong-xiangnan-2017 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Xiangnan Zhong - 通讯作者:
Xiangnan Zhong
Xiangnan Zhong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiangnan Zhong', 18)}}的其他基金
CAREER: A Skill-Driven Cooperative Learning Framework for Cyber-Physical Autonomy
职业:技能驱动的网络物理自主合作学习框架
- 批准号:
2047010 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1947418 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917276 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1947419 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
相似国自然基金
细梗香草活性成分CPS-B靶向MARCHF3/NEU4/CDH11通路抑制宫颈癌侵袭转移的作用机制研究
- 批准号:HDMZ25H280006
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
肺炎克雷伯菌WaaLCPS连接酶相关的CPS-LPS合成通路及致病机制的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于自动深度学习的电力CPS入侵检测及安全性提升方法研究
- 批准号:Z25F030003
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
先锋转录因子FOXA2调控CPS1介导尿素循环在急性肝衰竭肝性脑病中的机制研究
- 批准号:82300699
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
代谢酶CPS1调控PD-L1表达重塑肝癌免疫微环境的作用及机制研究
- 批准号:82303340
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
CPs/MOFs介导多烯衍生物拓扑光聚合的高立体选择性构建策略研究
- 批准号:22361004
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
尿素循环关键酶CPS1表达异常在肺癌转移中的作用和机制研究
- 批准号:82273390
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CPS 仿真中离散事件模型与连续时间模型的分布式协同运行问题研究
- 批准号:2022JJ40559
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于数字孪生的智能车间CPS混沌预测与控制方法
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
具有cps4I的植物乳杆菌在拮抗空肠弯曲杆菌中的作用和机制解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305883 - 财政年份:2023
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CPS Medium: Autonomous Control of Self-Powered Critical Infrastructures
CPS Medium:自供电关键基础设施的自主控制
- 批准号:
2206018 - 财政年份:2022
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
- 批准号:
2038801 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Scalable Intelligent Backscatter-Based RF Sensor Network for Self-Diagnosis of Structures
CPS:中:协作研究:用于结构自诊断的可扩展智能反向散射射频传感器网络
- 批准号:
2038761 - 财政年份:2021
- 资助金额:
$ 17.44万 - 项目类别:
Continuing Grant
CRII: CPS: A Self-Learning Intelligent Control Framework for Networked Cyber-Physical Systems
CRII:CPS:网络信息物理系统的自学习智能控制框架
- 批准号:
1947418 - 财政年份:2019
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CRII: CPS: Minimizing the Oracle Problem for Self-Adaptive Cyber-Physical Systems
CRII:CPS:最小化自适应网络物理系统的 Oracle 问题
- 批准号:
1657061 - 财政年份:2017
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CPS: Small: Geometric Self-Propelled Articulated Micro-Scale Devices
CPS:小型:几何自走式铰接微型装置
- 批准号:
1739308 - 财政年份:2017
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CPS: Small: Self-Improving Cyber-Physical Systems
CPS:小型:自我改进的网络物理系统
- 批准号:
1740079 - 财政年份:2017
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Towards Dependable Self-Powered Things for the IoT
CPS:协同:协作研究:为物联网打造可靠的自供电事物
- 批准号:
1646399 - 财政年份:2016
- 资助金额:
$ 17.44万 - 项目类别:
Standard Grant














{{item.name}}会员




