CRII: OAC: Online Optimization of End-to-End Data Transfers in High Performance Networks

CRII:OAC:高性能网络中端到端数据传输的在线优化

基本信息

项目摘要

With the advancement of computing and sensing technology, the amount of data generated by scientific applications is growing rapidly. To accommodate this growth, high speed networks with up to 400 Gbps capacities have been established. Despite the increasing availability of high-speed wide-area networks and the use of modern data transfer protocols designed for high performance, file transfers in practice attain only a fraction of theoretical maximum throughput, leaving networks underutilized and users unsatisfied. This project aims to develop a real-time transfer tuning algorithm to optimize file transfer throughput in high speed networks. Improved data transfer performance does not only enable efficient execution of distributed scientific applications but also fosters collaboration between scientists at geographically separated institutions by reducing time it takes to share data. This project complements the efforts to build next generation networking infrastructure by offering a novel solution to maximize utilization. The project also facilitates the development of a graduate level high-performance networking course at University of Nevada, Reno, and contribute to the education of undergraduate, female, and under-representative students. Therefore, this research aligns with the NSF's mission to promote the progress of science and to advance national prosperity, and welfare. It is critical to fully utilize available network bandwidth to meet stringent end-to-end performance requirements of distributed scientific workflows. Yet, existing data transfer applications (e.g., scp, bbcp, and ftp) fail to saturate the available network bandwidth due to several factors, such as end system limitations, ill-designed transfer protocols, and poor storage performances. Application-layer transfer tuning offers a comprehensive solution to enhance transfer throughput significantly and can be applied with only client-side modifications. However, finding optimal configuration for application-layer parameters is challenging due to large search space and complex dynamics of network and storage subsystems. This project applies state-of-the-art online convex optimization to application-layer parameter tuning problem as it offers performance and convergence guarantees even under complete uncertainty. In addition to being fast and optimal, online learning algorithms can guarantee the fair distribution of resources among users when combined with game-theory inspired utility functions. The project aims to improve the performance of large streaming applications under dynamic network conditions through anomaly detection and mitigation. It has three unique and innovative aspects: (i) It uses state-of-the art online learning algorithm to fine tune application-layer parameters in real-time. (ii) It improves accuracy and efficiency of sample transfers to minimize the overhead of real-time tuning. (iii) It offers quality of service for delay-sensitive transfers (e.g., high-speed streaming applications) through continuous performance monitoring and adaptive tuning.This project is jointly funded by Office of Advanced Cyberinfrastructure (OAC) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着计算和传感技术的进步,科学应用产生的数据量正在迅速增长。为了适应这种增长,已经建立了高达400 Gbps容量的高速网络。尽管高速广域网的可用性越来越高,并且使用了为高性能而设计的现代数据传输协议,但实际上文件传输仅达到理论最大吞吐量的一小部分,使得网络未得到充分利用,用户不满意。该项目旨在开发一种实时传输调优算法,以优化高速网络中的文件传输吞吐量。改进的数据传输性能不仅可以有效地执行分布式科学应用程序,还可以通过减少共享数据所需的时间来促进地理上分散的机构的科学家之间的协作。该项目通过提供一种新颖的解决方案来最大限度地提高利用率,从而补充了构建下一代网络基础设施的努力。该项目还促进了里诺的内华达州大学研究生水平的高性能网络课程的开发,并有助于本科生、女性和代表性不足的学生的教育。因此,这项研究符合NSF的使命,以促进科学的进步,促进国家的繁荣和福利。充分利用可用的网络带宽以满足分布式科学工作流严格的端到端性能要求至关重要。然而,现有的数据传输应用(例如,SCP、BBCP和FTP)由于几个因素,例如终端系统限制、设计不良的传输协议和较差的存储性能,不能使可用网络带宽饱和。应用层传输调优提供了一个全面的解决方案,可以显著提高传输吞吐量,并且只需在客户端进行修改即可应用。然而,寻找应用层参数的最佳配置是具有挑战性的,由于大的搜索空间和复杂的动态网络和存储子系统。该项目将最先进的在线凸优化应用于应用层参数调整问题,因为即使在完全不确定的情况下,它也能提供性能和收敛保证。除了快速和最优之外,在线学习算法还可以在与博弈论启发的效用函数相结合时保证资源在用户之间的公平分配。该项目旨在通过异常检测和缓解来提高动态网络条件下大型流媒体应用程序的性能。它有三个独特和创新的方面:(i)它使用最先进的在线学习算法来实时微调应用层参数。(ii)它提高了样本传输的准确性和效率,以最大限度地减少实时调整的开销。(iii)它为延迟敏感的传输提供服务质量(例如,该项目由高级网络基础设施办公室(OAC)和激励竞争研究既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sample Transfer Optimization with Adaptive Deep Neural Network
Time Series Analysis for Efficient Sample Transfers
高效样品转移的时间序列分析
Swift and Accurate End-to-End Throughput Measurements for High-Speed Networks
快速、准确的高速网络端到端吞吐量测量
Towards Generalizable Network Anomaly Detection Models
迈向可推广的网络异常检测模型
RIVA: Robust Integrity Verification Algorithm for High-Speed File Transfers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Engin Arslan其他文献

Scattering analysis of ultrathin barrier (< 7 nm) GaN-based heterostructures
  • DOI:
    10.1007/s00339-019-2591-z
  • 发表时间:
    2019-03-30
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Polat Narin;Engin Arslan;Mehmet Ozturk;Mustafa Ozturk;Sefer Bora Lisesivdin;Ekmel Ozbay
  • 通讯作者:
    Ekmel Ozbay
Demystifying the Performance of Data Transfers in High-Performance Research Networks
揭秘高性能研究网络中数据传输的性能
HARP: Predictive Transfer Optimization Based on Historical Analysis and Real-Time Probing
HARP:基于历史分析和实时探测的预测传输优化
Network management game
网络管理游戏
Energy-performance trade-offs in data transfer tuning at the end-systems
终端系统数据传输调整中的能源性能权衡
  • DOI:
    10.1016/j.suscom.2014.08.004
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Alan;Engin Arslan;T. Kosar
  • 通讯作者:
    T. Kosar

Engin Arslan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Engin Arslan', 18)}}的其他基金

Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Continuing Grant
Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2209955
  • 财政年份:
    2022
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2145742
  • 财政年份:
    2022
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了