Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows

要素:分布式科学工作流程的自适应端到端并行性

基本信息

项目摘要

Technological advancements in sensing and computing technologies have led to an unprecedented increase in the amount of data generated by scientific applications. As science projects are increasingly distributed in nature, the increase in data sizes in turn results in an increased volume of traffic that needs to be moved across geographically distributed locations. Although significant investments have been made to build high-speed networks to facilitate data movements between research and education institutions, it is difficult for domain scientists to efficiently utilize this available capacity mainly due to the lack of scalable data transfer services. This project addresses this need by developing a scalable and reliable data transfer service. It further integrates the data transfer service into elastic workflow management systems to achieve end-to-end optimization for distributed science workflows. This project makes three novel contributions to the field: (i) it innovates scalable integrity verification and encryption for file transfers to ensure the reliability of file transfers without sacrificing performance. It takes advantage of computing resources available at data transfer nodes to scale the performance of integrity verification and channel encryption features. (ii) It innovates end-to-end parallelism for distributed workflows by integrating an online transfer optimization service into elastic workflow management tools. Unlike existing workflow management solutions, which merely focus on the optimization of computing tasks, the proposed integration of online transfer optimization services into elastic workflow schedulers enables true end-to-end parallelism for distributed workflows. (iii) Finally, it demonstrates the performance of the developed service on a real-world bioscience workflow that streams a large volume of sequence read archive data from the NCBI database to extract computation-ready SAM/BAM files.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传感和计算技术的技术进步导致科学应用产生的数据量空前增加。随着科学项目在自然界中的分布越来越多,数据大小的增加反过来又导致需要在地理上分布的位置之间移动的流量增加。虽然已经进行了大量投资来建立高速网络,以促进研究和教育机构之间的数据移动,但由于缺乏可扩展的数据传输服务,领域科学家很难有效地利用这种可用的能力。该项目通过开发可扩展和可靠的数据传输服务来满足这一需求。它进一步将数据传输服务集成到弹性工作流管理系统中,以实现分布式科学工作流的端到端优化。该项目对该领域做出了三个新的贡献:(i)它创新了可扩展的完整性验证和文件传输加密,以确保文件传输的可靠性而不牺牲性能。它利用数据传输节点处可用的计算资源来扩展完整性验证和通道加密功能的性能。(ii)它通过将在线传输优化服务集成到弹性工作流管理工具中,为分布式工作流创新了端到端并行性。与现有的工作流管理解决方案,这仅仅是专注于计算任务的优化,在线传输优化服务到弹性工作流调度器的建议集成,使真正的端到端的并行分布式工作流。(iii)最后,它展示了一个真实世界的生物科学工作流程,从NCBI数据库中提取大量的序列读取存档数据流计算就绪SAM/BAM文件的性能开发的服务。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks
Falcon: Fair and Efficient Online File Transfer Optimization
  • DOI:
    10.1109/tpds.2023.3282872
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Md. Arifuzzaman;B. Bockelman;James Basney;Engin Arslan
  • 通讯作者:
    Md. Arifuzzaman;B. Bockelman;James Basney;Engin Arslan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Engin Arslan其他文献

Scattering analysis of ultrathin barrier (< 7 nm) GaN-based heterostructures
  • DOI:
    10.1007/s00339-019-2591-z
  • 发表时间:
    2019-03-30
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Polat Narin;Engin Arslan;Mehmet Ozturk;Mustafa Ozturk;Sefer Bora Lisesivdin;Ekmel Ozbay
  • 通讯作者:
    Ekmel Ozbay
Demystifying the Performance of Data Transfers in High-Performance Research Networks
揭秘高性能研究网络中数据传输的性能
HARP: Predictive Transfer Optimization Based on Historical Analysis and Real-Time Probing
HARP:基于历史分析和实时探测的预测传输优化
Network management game
网络管理游戏
Energy-performance trade-offs in data transfer tuning at the end-systems
终端系统数据传输调整中的能源性能权衡
  • DOI:
    10.1016/j.suscom.2014.08.004
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Alan;Engin Arslan;T. Kosar
  • 通讯作者:
    T. Kosar

Engin Arslan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Engin Arslan', 18)}}的其他基金

Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2145742
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2007789
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
CRII: OAC: Online Optimization of End-to-End Data Transfers in High Performance Networks
CRII:OAC:高性能网络中端到端数据传输的在线优化
  • 批准号:
    1850353
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Radio Frequency Piezoelectric Acoustic Microsystems for Efficient and Adaptive Front-End Signal Processing
职业:用于高效和自适应前端信号处理的射频压电声学微系统
  • 批准号:
    2339731
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
SWIFT: Advancing Coexistence through a Cross-Layer Design Platform with an Adaptive Frequency-Selective Radio Front-End and Digital Algorithms
SWIFT:通过具有自适应选频无线电前端和数字算法的跨层设计平台促进共存
  • 批准号:
    2229021
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Estimating fast and slow: end-to-end streaming data assimilation with adaptive fidelity
估计快和慢:具有自适应保真度的端到端流数据同化
  • 批准号:
    23K11140
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
End-to-End Adaptive Signal Processing for Multiplexed Synthetic Aperture Radar
复用合成孔径雷达的端到端自适应信号处理
  • 批准号:
    20K14747
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
End-to-end Synchronization, Adaptive Link Resource Reservation, and Data Tunnelling
端到端同步、自适应链路资源预留和数据隧道
  • 批准号:
    538563-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Idea to Innovation
End-to-end Synchronization, Adaptive Link Resource Reservation and Data Tunnelling
端到端同步、自适应链路资源预留和数据隧道
  • 批准号:
    501980-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Idea to Innovation
Adaptive Responses to the End of the Ice Age in Southern Germany
德国南部对冰河时代结束的适应性反应
  • 批准号:
    1011902
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Collaborative Research: Adaptive Techniques for Achieving End-to-End QoS in the I/O Stack on Petascale Multiprocessors
协作研究:在千万级多处理器上的 I/O 堆栈中实现端到端 QoS 的自适应技术
  • 批准号:
    0937939
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Adaptive Techniques for Achieving End-to-End QoS in the I/O Stack on Petascale Multiprocessors
协作研究:在千万级多处理器上的 I/O 堆栈中实现端到端 QoS 的自适应技术
  • 批准号:
    0937949
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了