Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale

协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化

基本信息

项目摘要

Despite continuous efforts and investments to upgrade the networking infrastructure of research and education institutions to meet the needs of large-scale science applications, the data transfers on these networks often perform very poorly. Understanding the underlying reasons for poor transfer performance is important yet challenging due to the sophisticated design of today's cyberinfrastructures. This project offers a set of novel models and algorithms to detect and mitigate performance issues of data transfers in research networks. The proposed suite of tools helps researchers and system administrators to pinpoint the root cause of performance problems of data transfers so that necessary actions can be taken swiftly to minimize their impact on ongoing transfers. The project will also integrate the research into all levels of education, including science projects with K-12 students, development of new curriculum modules for graduate- and undergraduate-level courses, and summer workshops specifically for minority groups.Understanding the true underlying reasons for poor transfer performance is key to mitigating them and delivering the promised transfer speeds. However, the involvement of multiple end systems, dynamically changing background traffic, and the complexity of today's networking infrastructures turns it into a complicated and time-consuming process. This project develops a novel anomaly-detection and performance-optimization framework for end-to-end data transfers at scale. The framework helps to predict, understand, diagnose, and optimize wide-area file transfers in today's extreme-scale cyberinfrastructures. To achieve this goal, it derives deep-neural-network-based predictive models that can relate transfer settings to throughput. These models are then used to estimate the optimal configuration for new transfers. The framework also gathers performance metrics for end-system and network resources periodically to keep track of system utilization. When a transfer anomaly is detected, the collected metrics are fed into anomaly-classification models to identify the root causes. Once the underlying reasons of performance problems are identified, the framework launches a real-time optimization process to reconfigure the transfer settings such that the impact of anomalies can be alleviated.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管不断努力和投资升级研究和教育机构的网络基础设施以满足大规模科学应用的需求,但这些网络上的数据传输往往表现较差。由于当今网络基础设施的精致设计,了解转移绩效不佳的根本原因是重要但又具有挑战性的。该项目提供了一系列新颖的模型和算法,以检测和减轻研究网络中数据传输的性能问题。拟议的工具套件可帮助研究人员和系统管理员查明数据传输绩效问题的根本原因,以便可以迅速采取必要的措施来最大程度地减少其对正在进行的转移的影响。 该项目还将将研究整合到所有级别的教育中,包括与K-12学生的科学项目,开发用于研究生和本科课程的新课程模块以及专门针对少数群体的夏季研讨会。理解不良转移绩效的真实理由是使他们降低和交付承诺的转移速度的关键。但是,多个最终​​系统的参与,动态变化的背景流量以及当今网络基础架构的复杂性将其变成了一个复杂且耗时的过程。 该项目为端到端数据传输的新型异常检测和性能优化框架开发。该框架有助于预测,理解,诊断和优化当今极端的网络基础设施中的广域文件传输。为了实现这一目标,它得出了基于深神经网络的预测模型,这些模型可以将转移设置与吞吐量相关联。然后,这些模型用于估计新传输的最佳配置。该框架还会定期收集最终系统和网络资源的性能指标,以跟踪系统利用率。当检测到转移异常时,收集的指标被送入异常分类模型以识别根本原因。一旦确定了绩效问题的根本原因,该框架就会启动一个实时优化过程,以重新配置转移设置,以便可以减轻异常的影响。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子和更广泛影响的评估来审查审查的审查标准,可以通过评估来获得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Wide-Area Data Transfers for Streaming Workflows
Falcon: Fair and Efficient Online File Transfer Optimization
  • DOI:
    10.1109/tpds.2023.3282872
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Md. Arifuzzaman;B. Bockelman;James Basney;Engin Arslan
  • 通讯作者:
    Md. Arifuzzaman;B. Bockelman;James Basney;Engin Arslan
Use Only What You Need: Judicious Parallelism For File Transfers in High Performance Networks
Learning Transfers via Transfer Learning
通过迁移学习进行学习迁移
Avoiding data loss and corruption for file transfers with Fast Integrity Verification
  • DOI:
    10.1016/j.jpdc.2021.02.002
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ahmed Alhussen;Engin Arslan
  • 通讯作者:
    Ahmed Alhussen;Engin Arslan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Engin Arslan其他文献

HARP: Predictive Transfer Optimization Based on Historical Analysis and Real-Time Probing
HARP:基于历史分析和实时探测的预测传输优化
Demystifying the Performance of Data Transfers in High-Performance Research Networks
揭秘高性能研究网络中数据传输的性能
Network management game
网络管理游戏
Energy-performance trade-offs in data transfer tuning at the end-systems
终端系统数据传输调整中的能源性能权衡
  • DOI:
    10.1016/j.suscom.2014.08.004
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Alan;Engin Arslan;T. Kosar
  • 通讯作者:
    T. Kosar
Real-time genetic optimization of large file transfers
大文件传输的实时遗传优化

Engin Arslan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Engin Arslan', 18)}}的其他基金

Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2427408
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Small: Anomaly Detection and Performance Optimization for End-to-End Data Transfers at Scale
协作研究:OAC 核心:小型:大规模端到端数据传输的异常检测和性能优化
  • 批准号:
    2412329
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2348281
  • 财政年份:
    2023
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
Elements: Adaptive End-to-End Parallelism for Distributed Science Workflows
要素:分布式科学工作流程的自适应端到端并行性
  • 批准号:
    2209955
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
CAREER: Efficient and Reliable Data Transfer Services for Next Generation Research Networks
职业:为下一代研究网络提供高效可靠的数据传输服务
  • 批准号:
    2145742
  • 财政年份:
    2022
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Continuing Grant
CRII: OAC: Online Optimization of End-to-End Data Transfers in High Performance Networks
CRII:OAC:高性能网络中端到端数据传输的在线优化
  • 批准号:
    1850353
  • 财政年份:
    2019
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 27.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了