CAREER: Generalizations in Obstacle Avoidance Theory

职业:避障理论的概括

基本信息

  • 批准号:
    1851817
  • 负责人:
  • 金额:
    $ 35.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

This project develops a theoretical framework that enables an analytical characterization of guidance laws for obstacle avoidance, accompanied by an experimental validation of these laws. This has significant implications since the obstacle avoidance problem is an important component of the path planning problem, which appears in several diverse fields including robotics, autonomous air, ground and underwater vehicles, computer animation, molecular motion, autonomous wheelchairs, spacecraft avoiding space debris, robotic surgery, assistance aids for the blind, etc. The guidance laws designed are particularly applicable for real-time implementation of precise path planning in cluttered dynamic environments such as those containing robot manipulators, humanoid robots, vehicles flying in formation and other high-dimensional spaces wherein the agents have no a priori information about their environment. A robustness analysis of the designed guidance laws to various uncertainties such as sensor noise, data delays and data dropouts is performed, followed by an experimental validation wherein the guidance laws are coded on microcontroller platforms in a resource-efficient manner and implemented on small-scale robotic ground and air vehicles. The expected results include guidance laws suitable for collision avoidance of obstacles of various, possibly time-varying, shapes moving in high-dimensional stochastic environments, along with a postulation of the safety guarantees of these guidance laws. This project also performs multiple outreach activities and introduces new curriculum that promote the education and applications of robotics, and these activities are conducted in levels starting from K-12 all the way through undergraduate and graduate level engineering education.
该项目开发了一个理论框架,使避障指导法律的分析表征,伴随着这些法律的实验验证。 这具有重要意义,因为避障问题是路径规划问题的重要组成部分,路径规划问题出现在几个不同的领域,包括机器人技术,自主空中,地面和水下车辆,计算机动画,分子运动,自主轮椅,避免空间碎片的航天器,机器人手术,盲人辅助设备,所设计的制导律特别适用于在诸如包含机器人操纵器、类人机器人编队飞行的车辆和其他高维空间,其中智能体没有关于其环境的先验信息。 的鲁棒性分析所设计的制导律的各种不确定性,如传感器噪声,数据延迟和数据丢失进行,然后通过实验验证,其中的制导律被编码在微控制器平台上的资源有效的方式和小型机器人地面和空中车辆上实施。 预期的结果包括指导法律适用于避免碰撞的障碍物的各种,可能随时间变化,形状移动在高维随机环境中,沿着假设这些指导法律的安全保证。 该项目还开展了多项推广活动,并引入了新的课程,以促进机器人技术的教育和应用,这些活动从K-12开始一直到本科和研究生阶段的工程教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Animesh Chakravarthy其他文献

Animesh Chakravarthy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Animesh Chakravarthy', 18)}}的其他基金

I-Corps: Enhancing Autonomous Capabilities of Unmanned Aerial and Underwater Vehicles
I-Corps:增强无人机和水下航行器的自主能力
  • 批准号:
    2114712
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1936599
  • 财政年份:
    2019
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
  • 批准号:
    1446557
  • 财政年份:
    2015
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
CAREER: Generalizations in Obstacle Avoidance Theory
职业:避障理论的概括
  • 批准号:
    1351677
  • 财政年份:
    2014
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant

相似海外基金

Generalizations of the Ultrapower Axiom
超能力公理的概括
  • 批准号:
    2401789
  • 财政年份:
    2024
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
On new generalizations of Einstein-Kaehler metrics: relationships between their existence and stability
关于爱因斯坦-凯勒度量的新概括:它们的存在与稳定性之间的关系
  • 批准号:
    23K03094
  • 财政年份:
    2023
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Several generalizations and applications of KP hierarchy
KP层次结构的几种概括及应用
  • 批准号:
    23K03137
  • 财政年份:
    2023
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conference on Hyperbolic Groups and Their Generalizations
双曲群及其推广会议
  • 批准号:
    2203429
  • 财政年份:
    2022
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
Generalizations of noisy quantum channels and constructions on quantum error-correcting codes for the channel
噪声量子信道的概括和信道量子纠错码的构造
  • 批准号:
    21H03393
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Generalizations of hyperbolicity
双曲性的概括
  • 批准号:
    564135-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Geometric Analysis of Einstein Manifolds and Their Generalizations
爱因斯坦流形的几何分析及其推广
  • 批准号:
    2212818
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Continuing Grant
Combinatorial designs and their generalizations
组合设计及其概括
  • 批准号:
    RGPIN-2017-03891
  • 财政年份:
    2021
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Discovery Grants Program - Individual
Combinatorial designs and their generalizations
组合设计及其概括
  • 批准号:
    RGPIN-2017-03891
  • 财政年份:
    2020
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CIF: Generalizations for Matrix and Tensor Estimation
CRII:CIF:矩阵和张量估计的概括
  • 批准号:
    1948256
  • 财政年份:
    2020
  • 资助金额:
    $ 35.7万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了