Conference on Hyperbolic Groups and Their Generalizations

双曲群及其推广会议

基本信息

  • 批准号:
    2203429
  • 负责人:
  • 金额:
    $ 3.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This award provides travel support for a delegation of US-based early-career mathematicians to attend the conference “Hyperbolic groups and their generalisations” in Paris, held June 20-24, 2022. The conference is part of a series of conferences and lectures in the “Groups Acting on Fractals” thematic trimester at Institut Henri Poincaré, which is one of the major events in the field of geometric group theory in year 2022. The conference invites a range of speakers of different career stages and arranges several discussion sessions aiming at creating a conductive collaboration environment. The grant will allow the supported US-based mathematicians to learn about important recent development in the field, to communicate their research results and exchange research ideas with their European colleagues, and to spark new research collaborations. Special effort will be devoted to identify and support members of groups under-represented in mathematics who will benefit from attending the conference. The study of Gromov hyperbolicity is a central topic in geometry group theory, and has deep connections in geometry, topology, dynamics, and logic. In recent years, several important properties of hyperbolic groups were established, together with an explosion of new theories aiming at identifying traces of hyperbolicity in a highly non-hyperbolic setting. This leads to new angles of looking at hyperbolicity, as well as many new connections to other subjects. This conference will bring together prominent researchers in geometric group theory and neighboring fields and feature talks given by leading experts on recent major development of hyperbolicity and its generalizations. The conference will cover several recent major advances on the geometry of groups acting on Gromov hyperbolic spaces, as well as feature a variety of connections between Gromov hyperbolicity with topics in random walks, logic, higher Teichmüller theory, and geometric measure theory. This conference will also disseminate knowledge to the broader mathematical community by hosting all the talks for the conference digitally. For more information, see the conference website: https://indico.math.cnrs.fr/event/6577/overview.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国早期职业数学家代表团参加于2022年6月20日至24日在巴黎举行的“双曲群及其推广”会议提供旅费支持。本次会议是Henri poincarcarve研究所“分形作用的群体”主题学期系列会议和讲座的一部分,该主题学期是2022年几何群论领域的重大事件之一。会议邀请了不同职业阶段的演讲者,并安排了几个讨论环节,旨在创造一个良好的协作环境。这项资助将允许受资助的美国数学家了解该领域的重要最新发展,与他们的欧洲同事交流他们的研究成果和研究思想,并激发新的研究合作。将特别努力确定和支持在数学领域代表性不足的群体成员,他们将从参加会议中受益。Gromov双曲性的研究是几何群论的中心课题,在几何、拓扑学、动力学、逻辑学等领域有着深刻的联系。近年来,双曲群的几个重要性质被确立,以及旨在识别高度非双曲环境中双曲痕迹的新理论的爆发。这带来了看待双曲线的新角度,以及与其他学科的许多新联系。本次会议将汇集几何群论和邻近领域的杰出研究人员,并由顶尖专家就双曲性及其推广的最新主要发展进行演讲。会议将涵盖Gromov双曲空间上群几何的几个最新进展,以及Gromov双曲与随机漫步、逻辑学、高等teichmller理论和几何测度理论之间的各种联系。本次会议还将通过数字化主办会议的所有会谈,向更广泛的数学界传播知识。欲了解更多信息,请参阅会议网站:https://indico.math.cnrs.fr/event/6577/overview.This该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyin Huang其他文献

Proper proximality in non-positive curvature
非正曲率的适当邻近性
  • DOI:
    10.1353/ajm.2023.a907700
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Camille Horbez;Jingyin Huang;Jean L'ecureux
  • 通讯作者:
    Jean L'ecureux
Morse Quasiflats.
莫尔斯准扁平。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyin Huang;Bruce Kleiner;Stephan Stadler
  • 通讯作者:
    Stephan Stadler
Orbit equivalence rigidity of irreducible actions of right-angled Artin groups
直角Artin群不可约作用的轨道等效刚度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Camille Horbez;Jingyin Huang;A. Ioana
  • 通讯作者:
    A. Ioana
Lattices, Garside structures and weakly modular graphs
格子、Garside 结构和弱模块化图
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    T. Haettel;Jingyin Huang
  • 通讯作者:
    Jingyin Huang
Metric systolicity and two-dimensional Artin groups
公制收缩期和二维 Artin 群
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Jingyin Huang;Damian Osajda
  • 通讯作者:
    Damian Osajda

Jingyin Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyin Huang', 18)}}的其他基金

Conference: Geometric and Asymptotic Group Theory with Applications 2024
会议:几何和渐近群理论及其应用 2024
  • 批准号:
    2403833
  • 财政年份:
    2024
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
The geometry, rigidity and combinatorics of spaces and groups with non-positive curvature feature
具有非正曲率特征的空间和群的几何、刚度和组合
  • 批准号:
    2305411
  • 财政年份:
    2023
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
Conference: Geometry and Analysis of Groups and Manifolds
会议:群和流形的几何与分析
  • 批准号:
    2247784
  • 财政年份:
    2023
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant

相似海外基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Continuing Grant
Poisson Boundaries of Hyperbolic Groups
双曲群的泊松边界
  • 批准号:
    577681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
Groups and Hyperbolic Dynamical Systems
群和双曲动力系统
  • 批准号:
    2204379
  • 财政年份:
    2022
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
Random Walks on Hyperbolic-Like Graphs and Groups
类双曲图和群上的随机游走
  • 批准号:
    575508-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Random walks on hyperbolic-like graphs and groups
在类双曲图和群上随机游走
  • 批准号:
    562189-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 3.36万
  • 项目类别:
    University Undergraduate Student Research Awards
Generalisations of hyperbolic groups and their properties
双曲群及其性质的推广
  • 批准号:
    2439634
  • 财政年份:
    2020
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Studentship
Algorithms for acylindrically hyperbolic groups
圆柱双曲群的算法
  • 批准号:
    2461415
  • 财政年份:
    2020
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Studentship
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1853989
  • 财政年份:
    2019
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1854194
  • 财政年份:
    2019
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: von Neumann Algebras Associated to Groups Acting on Hyperbolic Spaces
FRG:合作研究:与作用于双曲空间的群相关的冯诺依曼代数
  • 批准号:
    1854074
  • 财政年份:
    2019
  • 资助金额:
    $ 3.36万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了