Collaborative Research: Multiscale Modeling of Intraocular Pressure Dynamics and Its Role in Ocular Physiology and Pharmacology
合作研究:眼压动态的多尺度建模及其在眼生理学和药理学中的作用
基本信息
- 批准号:1853222
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop quantitative methods to combat vision impairment, which is one of the most impactful factors affecting quality of life. Specifically, this project will study the pressure of the fluids filling the eye globe, also called intraocular pressure, whose control is crucial to maintain a proper visual function. Chronically high intraocular pressure is associated with high risk of developing glaucoma, a progressive optic neuropathy characterized by a loss of retinal ganglion cells and permanent vision loss. Glaucoma constitutes one of the leading causes of irreversible blindness worldwide. Despite the importance of maintaining healthy levels of intraocular pressure, to date, the question of what is its optimal range for a given individual remains unanswered. The variability in outcomes, side effects and hemodynamic impacts following medications that lower intraocular pressure in glaucoma patients poses an additional, and currently unresolved, challenge in preventing vision loss for millions of individuals. The PIs will address this critical need by utilizing the laws of physics to develop a virtual laboratory where the relationship between intraocular pressure, medications, hemodynamics and ocular function can be studied quantitatively, and the optimal target level for intraocular pressure and the therapeutic strategy to achieve it can be theoretically estimated by accounting for patient's specific conditions. The development of a virtual laboratory to study ocular physiology and function requires to account for multiple length scales simultaneously. Since the action of medications occurs at the cellular level (approx. length scale: 100 microns), even down to the ion exchangers across the membrane of the non-pigmented epithelial cells within the ciliary processes (approx. length scale: 10 nm), while the clinical assessments of ocular hemodynamics and function occur at the whole organ level (approx. length scale: 3cm), it is necessary to adopt a multiscale modeling approach. The main challenges of this project are: (i) capturing the essential biophysical features of ocular physiology across length scales that differ by 6 orders of magnitude, while maintaining the solution of the overall model affordable; (ii) preserving the essential biophysical features of ocular physiology when discretizing the multiscale problem in order to obtain its approximate numerical solution; (iii) validating the model predictions with a large and comprehensive clinical and experimental dataset. To best address these challenges and successfully complete this project, the model development is articulated into two specific aims: (Aim 1) Multiscale modeling of the relationship between aqueous humor flow and medications for intraocular pressure to theoretically investigate the hypotensive efficacy on patients presenting different clinical conditions; (Aim2) Multiscale modeling of the relationship between aqueous humor flow and ocular perfusion to theoretically investigate the changes on ocular hemodynamics and function in patients presenting different clinical conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发量化方法来对抗视力障碍,这是影响生活质量的最重要因素之一。具体来说,该项目将研究填充眼球地球仪的液体的压力,也称为眼内压,其控制对于维持适当的视觉功能至关重要。慢性高眼内压与发展青光眼的高风险相关,青光眼是一种以视网膜神经节细胞丧失和永久性视力丧失为特征的进行性视神经病变。青光眼是世界范围内不可逆性失明的主要原因之一。尽管维持健康的眼内压水平的重要性,迄今为止,对于给定个体的最佳范围是什么的问题仍然没有答案。降低青光眼患者眼内压的药物治疗后结局、副作用和血流动力学影响的可变性,对预防数百万人的视力丧失提出了额外的、目前尚未解决的挑战。PI将通过利用物理定律开发虚拟实验室来解决这一关键需求,在该虚拟实验室中,可以定量研究眼内压,药物,血液动力学和眼功能之间的关系,并且可以通过考虑患者的具体情况从理论上估计眼内压的最佳目标水平和实现该目标的治疗策略。 发展一个虚拟实验室来研究眼生理和功能,需要同时考虑多个长度尺度。由于药物的作用发生在细胞水平(约。长度比例:100微米),甚至下至穿过睫状突内的非色素上皮细胞的膜的离子交换剂(约100微米)。长度尺度:10 nm),而眼部血流动力学和功能的临床评估发生在整个器官水平(约10 nm)。长度尺度:3cm),有必要采用多尺度建模方法。该项目的主要挑战是:(i)在相差6个数量级的长度尺度上捕获眼生理学的基本生物物理特征,同时保持整个模型的解决方案是可负担的;(ii)在离散化多尺度问题时保留眼生理学的基本生物物理特征,以获得其近似数值解;(iii)用大型和综合的临床和实验数据集验证模型预测。为了最好地应对这些挑战并成功完成该项目,模型开发被阐明为两个具体目标:(目标1)对眼内压药物与房水流量之间的关系进行多尺度建模,以从理论上研究对表现出不同临床状况的患者的降压疗效;(目标2)多尺度建模的房水流量和眼部灌注之间的关系,从理论上研究眼血流动力学和功能的变化,在患者呈现不同的临床条件。反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of vessel tortuosity and its impact on hemodynamics in retinopathy of prematurity
早产儿视网膜病变血管迂曲度及其对血流动力学的影响分析
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Koogler, B;Young, B;Campbell, JP;Guidoboni, G
- 通讯作者:Guidoboni, G
Ocular blood flow as it relates to race and disease on glaucoma.
- DOI:10.1016/j.yaoo.2021.04.016
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Siesky B;Harris A;Vercellin ACV;Guidoboni G;Tsai JC
- 通讯作者:Tsai JC
Physiology-enhanced transfer learning discovers combinations of intraocular pressure and blood pressure associated with structural biomarkers of glaucoma eyes in a population-based study
在一项基于人群的研究中,生理学增强的迁移学习发现了与青光眼结构生物标志物相关的眼压和血压的组合
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Guidoboni, G;Zou, D;Wikle, C;Keller, J;Antman, G;Siesky, B;Verticchio, A;Topouzis, F;Harris, A
- 通讯作者:Harris, A
A THEORETICAL STUDY OF AQUEOUS HUMOR SECRETION BASED ON A CONTINUUM MODEL COUPLING ELECTROCHEMICAL AND FLUID-DYNAMICAL TRANSMEMBRANE MECHANISMS
- DOI:10.2140/camcos.2019.14.65
- 发表时间:2019-01-01
- 期刊:
- 影响因子:2.1
- 作者:Sala, Lorenzo;Mauri, Aurelio Giancarlo;Harris, Alon
- 通讯作者:Harris, Alon
A Stabilized Dual Mixed Hybrid Finite Element Method with Lagrange Multipliers for Three-Dimensional Elliptic Problems with Internal Interfaces
- DOI:10.1007/s10915-020-01163-7
- 发表时间:2020-02
- 期刊:
- 影响因子:2.5
- 作者:R. Sacco;A. Mauri;G. Guidoboni
- 通讯作者:R. Sacco;A. Mauri;G. Guidoboni
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giovanna Guidoboni其他文献
Ophthalmic Product Development: From Bench to Bedside
眼科产品开发:从实验室到临床
- DOI:
10.1007/978-3-030-76367-1 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Seshadri Neervannan;Uday B. Kompella;Patrick M. Hughes;Jie Shen;S. P. Srinivas;Giovanna Guidoboni;A. Burli;Bhavya Harjai;Clive G. Wilson;Imran Ahmed;Wanachat Chaiyasan;Riccardo Sacco;Abhishek Anand;Hemant Amreen H. Siraj;Kumar Daima;Anuradha Gore;Chetan P. Pujara;Ayako Hasegawa;Melissa Gulmezian;Ying Cheng;Ramakrishnan Srikumar;Seungyil Yoon;M. Regn;H. Gukasyan;R. Graham;V. Agrahari;Onkar N. Singh;Frédéric Lallemand;J. Garrigue;V. Andrés;I. Molina;I. Bravo;R. Herrero;E. Sánchez;E. Souto;M. Espina;A. Cano;M. Ettcheto;Antoni Camins;M. L. García;Hu Yang;Gitanjali Sharma;Chen Zhou;S. Wadhwa;A. Parenky;Kenneth S. Graham;Amardeep S. Bhalla;Dingjiang Liu;Hunter H. Chen;Mohammed Shameem;Susan Lee;Laszlo Romoda;Michael Robinson;Peter A. Simmons;Stephanie H. Choi;Yan Wang;Darby Kozak;J. Michael;Gerard A. Rodrigues;Evgenyi Shalaev;Thomas K. Karami;James Cunningham;Hongwen M. Rivers;Shaoxin Feng;Dinen Shah;Nigel K. H. Slater - 通讯作者:
Nigel K. H. Slater
Noninvasive Cuffl ess Blood Pressure Monitoring. How Mechanism-Driven and Data-Driven Models Can Help in Clinical Practice
无创血压监测。机制驱动和数据驱动模型如何在临床实践中提供帮助
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mohamed Zaid;Mihail Popescu;Laurel A. Despins;James M. Keller;Marjorie Skubic;Giovanna Guidoboni - 通讯作者:
Giovanna Guidoboni
Giovanna Guidoboni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giovanna Guidoboni', 18)}}的其他基金
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2327640 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2108665 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Mathematical Modeling of Ocular Mechanics, Circulation and Oxygenation and their Relation to Glaucoma
眼力学、循环和氧合的数学模型及其与青光眼的关系
- 批准号:
1224195 - 财政年份:2012
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Efficient algorithms for free boundary flows of complex fluids
合作研究:复杂流体自由边界流的高效算法
- 批准号:
1134731 - 财政年份:2010
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Efficient algorithms for free boundary flows of complex fluids
合作研究:复杂流体自由边界流的高效算法
- 批准号:
0811138 - 财政年份:2008
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Multiscale study of oscillating flow and multiphase heat transfer in porous media
合作研究:多孔介质中振荡流和多相传热的多尺度研究
- 批准号:
2414527 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Building a multiscale community-led ecosystem for crustal geology through the integration of Macrostrat and StraboSpot
合作研究:GEO OSE 第 2 轨道:通过 Macrostrat 和 StraboSpot 的集成构建多尺度社区主导的地壳地质生态系统
- 批准号:
2324580 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Data-Driven Variational Multiscale Reduced Order Models for Biomedical and Engineering Applications
协作研究:用于生物医学和工程应用的数据驱动的变分多尺度降阶模型
- 批准号:
2345048 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Mechanics of Adsorption-Deformation Coupling in Soft Nanoporous Materials
合作研究:软纳米多孔材料吸附变形耦合的多尺度力学
- 批准号:
2331017 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2328533 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CDS&E/Collaborative Research: In-Situ Monitoring-Enabled Multiscale Modeling and Optimization for Environmental and Mechanical Performance of Advanced Manufactured Materials
CDS
- 批准号:
2245107 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Cardiomyocyte Mechano-Adaptation
合作研究:多尺度心肌细胞机械适应
- 批准号:
2230435 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148646 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant














{{item.name}}会员




