Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
基本信息
- 批准号:1854175
- 负责人:
- 金额:$ 1.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Intelligent, interactive, and highly networked machines -- with which people increasingly share their autonomy and agency -- are a growing part of the landscape, particularly in regard to work. As automation today moves from the factory floor to knowledge and service occupations, insight and action are needed to reap the benefits in increased productivity and increased job opportunities, and to mitigate social costs. Such innovations also have significant implications and potential value for lifelong learning, skills assessments, and job training/retraining in an environment in which workforce demands are changing rapidly. The workshop supported by this award will promote the convergence of cognitive psychology, learning sciences, data science, computer science, and engineering disciplines to define key challenges and research imperatives of the nexus of humans, technology, and work with focus on human affect, motivation, metacognition, and cognition during learning and problem solving. Convergence is the deep integration of knowledge, theories, methods, and data from multiple fields to form new and expanded frameworks for addressing scientific and societal challenges and opportunities. This convergence workshop addresses the future of work at the human-technology frontier.The specific focus of this multi-phased workshop approach is to advance fundamental understanding of how to collect and analyze multimodal, multichannel sensor on human affect, motivation, metacognition, and cognition during learning and problem solving, and effectively integrate this data into actionable educational interventions in advanced learning technology environments (e.g., intelligent tutoring systems). The impacts of this research extend to a diverse range of learning environments, and job training and retraining opportunities. A multi-phased workshop approach will be used to explore the implications in multiple job sectors, and the outcomes will be broadly disseminated across geographic and disciplinary boundaries.
智能、交互和高度联网的机器--人们越来越多地与之分享他们的自主权和代理--正在成为环境中日益增长的一部分,特别是在工作方面。今天,随着自动化从工厂车间转移到知识和服务行业,需要洞察和行动,以获得提高生产率和增加就业机会的好处,并降低社会成本。在劳动力需求迅速变化的环境中,这些创新对终身学习、技能评估和工作培训/再培训也具有重大影响和潜在价值。该奖项支持的研讨会将促进认知心理学、学习科学、数据科学、计算机科学和工程学科的融合,以确定人类、技术和工作的关键挑战和研究需求,重点关注人类在学习和解决问题过程中的情感、动机、元认知和认知。融合是对来自多个领域的知识、理论、方法和数据的深度整合,以形成应对科学和社会挑战和机遇的新的和扩展的框架。这一融合研讨会讨论了人类-技术前沿的未来工作。这种多阶段研讨会方法的具体重点是促进对如何收集和分析关于人类在学习和解决问题过程中的情感、动机、元认知和认知的多模式、多通道传感器的基本理解,并将这些数据有效地整合到高级学习技术环境中的可操作教育干预中(例如,智能教学系统)。这项研究的影响延伸到各种不同的学习环境,以及工作培训和再培训机会。将采用分阶段研讨会的方法,探讨对多个工作部门的影响,其成果将跨地域和学科范围广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Azevedo其他文献
A Systematic Review of Self-Regulated Learning through Integration of Multimodal Data and Artificial Intelligence
- DOI:
10.1007/s10648-025-10028-0 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:8.800
- 作者:
Susanne de Mooij;Joni Lämsä;Lyn Lim;Olli Aksela;Shruti Athavale;Inti Bistolfi;Flora Jin;Tongguang Li;Roger Azevedo;Maria Bannert;Dragan Gašević;Sanna Järvelä;Inge Molenaar - 通讯作者:
Inge Molenaar
Augmenting Deep Neural Networks with Symbolic Educational Knowledge: Towards Trustworthy and Interpretable AI for Education
用符号教育知识增强深层神经网络:迈向值得信赖和可解释的教育人工智能
- DOI:
10.3390/make6010028 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Danial Hooshyar;Roger Azevedo;Yeongwook Yang - 通讯作者:
Yeongwook Yang
Reflections on the field of metacognition: issues, challenges, and opportunities
- DOI:
10.1007/s11409-020-09231-x - 发表时间:
2020-06-03 - 期刊:
- 影响因子:4.800
- 作者:
Roger Azevedo - 通讯作者:
Roger Azevedo
Issues in dealing with sequential and temporal characteristics of self- and socially-regulated learning
- DOI:
10.1007/s11409-014-9123-1 - 发表时间:
2014-08-01 - 期刊:
- 影响因子:4.800
- 作者:
Roger Azevedo - 通讯作者:
Roger Azevedo
Advances in scaffolding learning with hypertext and hypermedia: theoretical, empirical, and design issues
- DOI:
10.1007/s11423-007-9066-1 - 发表时间:
2007-11-06 - 期刊:
- 影响因子:4.200
- 作者:
Michael J. Jacobson;Roger Azevedo - 通讯作者:
Roger Azevedo
Roger Azevedo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Azevedo', 18)}}的其他基金
FW-HTF-P: Augmenting Healthcare Professionals’ Training, Expertise Development, and Diagnostic Reasoning with AI-based Immersive Technologies in Telehealth
FW-HTF-P:通过远程医疗中基于人工智能的沉浸式技术增强医疗保健专业人员的培训、专业知识发展和诊断推理
- 批准号:
2128684 - 财政年份:2022
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
MetaDash: A Teacher Dashboard Informed by Real-Time Multichannel Self-Regulated Learning Data
MetaDash:由实时多渠道自我调节学习数据提供信息的教师仪表板
- 批准号:
1916417 - 财政年份:2018
- 资助金额:
$ 1.25万 - 项目类别:
Continuing Grant
Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
- 批准号:
1744351 - 财政年份:2017
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
MetaDash: A Teacher Dashboard Informed by Real-Time Multichannel Self-Regulated Learning Data
MetaDash:由实时多渠道自我调节学习数据提供信息的教师仪表板
- 批准号:
1660878 - 财政年份:2017
- 资助金额:
$ 1.25万 - 项目类别:
Continuing Grant
The Effectiveness of Intelligent Virtual Humans in Facilitating Self-Regulated Learning in STEM with MetaTutor
智能虚拟人通过 MetaTutor 促进 STEM 自我调节学习的有效性
- 批准号:
1431552 - 财政年份:2014
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Student Support for the AIED 2009 Artificial Intelligence in Education Conference
学生对 AIED 2009 人工智能教育会议的支持
- 批准号:
0918684 - 财政年份:2009
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
SGER: Detecting, Identifying, and Analyzing Cognitive, Affective, Metacognitive, and Motivational (CAMM) States During Self-Regulated Learning with Hypermedia
SGER:利用超媒体进行自我调节学习期间的认知、情感、元认知和动机 (CAMM) 状态的检测、识别和分析
- 批准号:
0841835 - 财政年份:2008
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
CAREER: The Role of Self-Regulated Learning in Students' Understanding of Science with Hypermedia
职业:自我调节学习在学生利用超媒体理解科学方面的作用
- 批准号:
0731828 - 财政年份:2007
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Student Support for the Artificial Intelligence in Education Conference, Los Angeles, CA -July 9-13, 2007
学生对人工智能教育会议的支持,加利福尼亚州洛杉矶 - 2007 年 7 月 9 日至 13 日
- 批准号:
0726616 - 财政年份:2007
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
CAREER: The Role of Self-Regulated Learning in Students' Understanding of Science with Hypermedia
职业:自我调节学习在学生利用超媒体理解科学方面的作用
- 批准号:
0133346 - 财政年份:2002
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326408 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research:FW-HTF-P: The Future of Virtual Teams: Enhancing Collaborative Creativity and Socio-cognitive wellbeing in Video-based Teams
协作研究:FW-HTF-P:虚拟团队的未来:增强基于视频的团队的协作创造力和社会认知福祉
- 批准号:
2222764 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-R: Future of Construction Workplace Health Monitoring
合作研究:FW-HTF-R:建筑工作场所健康监测的未来
- 批准号:
2401745 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Understanding the Ethics, Development, Design, and Integration of Interactive Artificial Intelligence Teammates in Future Mental Health Work
合作研究:FW-HTF-RL:了解未来心理健康工作中交互式人工智能队友的伦理、开发、设计和整合
- 批准号:
2326146 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326169 - 财政年份:2023
- 资助金额:
$ 1.25万 - 项目类别:
Standard Grant