The Effectiveness of Intelligent Virtual Humans in Facilitating Self-Regulated Learning in STEM with MetaTutor

智能虚拟人通过 MetaTutor 促进 STEM 自我调节学习的有效性

基本信息

  • 批准号:
    1431552
  • 负责人:
  • 金额:
    $ 136.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

The investigators will research how characteristics of intelligent virtual humans (IVHs) support the ability of students to reflect on and, therefore, improve their learning in undergraduate biology. To date, research has shown mixed effectiveness when human avatars are used in learning technologies. To remedy that, the researchers will first study how expert human tutors use verbal and facial cues in reacting to students' cognitive, affective, metacognitive, and motivational (CAMM) processes. Then, they will use these data to build an enhanced intelligent virtual human tutor (by altering software called "MetaTutor"). The project will advance the field's ability to build more effective intelligent tutors and advance understanding of self-regulated learning. The researchers propose to experimentally study the effectiveness of the enhanced IVHs on learners' self-regulatory processes and other learning outcomes. Data will be collected on both a natural face and a natural face that has been morphed and presented as a virtual human. The facial and verbal expressions are meant to provide learners with an additional information source they can use to monitor and regulate their ongoing self-regulatory processes, including making accurate emotional appraisals. In addition to the facial data, the researchers will collect self-report data, trace data using a variety of sensors, learning outcomes (e.g., pretest and posttest), and knowledge construction activities (e.g., summaries of content, notes, quizzes). Finally, the project will be disseminated in the form of journal publications, conference presentations, and an enhanced version of MetaTutor.
研究人员将研究智能虚拟人(IVHS)的特征如何支持学生反思的能力,从而提高他们在本科生物学方面的学习。到目前为止,研究表明,当人类化身用于学习技术时,效果好坏参半。为了纠正这一点,研究人员将首先研究专家人类导师如何使用语言和面部线索对学生的认知、情感、元认知和动机(CAMM)过程做出反应。然后,他们将使用这些数据来构建一个增强型智能虚拟人类导师(通过更改名为“MetaTutor”的软件)。该项目将提高该领域建立更有效的智能导师的能力,并增进对自我调节学习的理解。研究人员建议通过实验研究增强的IVHS对学习者自我调节过程和其他学习结果的有效性。将收集自然人脸和变形后的自然人脸的数据,并将其呈现为虚拟人。面部和语言表达是为了为学习者提供一个额外的信息来源,他们可以用来监控和调节他们正在进行的自我调节过程,包括做出准确的情绪评估。除了面部数据,研究人员还将收集自我报告数据、使用各种传感器跟踪数据、学习结果(例如,前测和后测)以及知识构建活动(例如,内容摘要、笔记、测验)。最后,将以期刊出版物、会议报告和MetaTutor增强版的形式传播该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Azevedo其他文献

A Systematic Review of Self-Regulated Learning through Integration of Multimodal Data and Artificial Intelligence
  • DOI:
    10.1007/s10648-025-10028-0
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    8.800
  • 作者:
    Susanne de Mooij;Joni Lämsä;Lyn Lim;Olli Aksela;Shruti Athavale;Inti Bistolfi;Flora Jin;Tongguang Li;Roger Azevedo;Maria Bannert;Dragan Gašević;Sanna Järvelä;Inge Molenaar
  • 通讯作者:
    Inge Molenaar
Augmenting Deep Neural Networks with Symbolic Educational Knowledge: Towards Trustworthy and Interpretable AI for Education
用符号教育知识增强深层神经网络:迈向值得信赖和可解释的教育人工智能
  • DOI:
    10.3390/make6010028
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Danial Hooshyar;Roger Azevedo;Yeongwook Yang
  • 通讯作者:
    Yeongwook Yang
Reflections on the field of metacognition: issues, challenges, and opportunities
  • DOI:
    10.1007/s11409-020-09231-x
  • 发表时间:
    2020-06-03
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Roger Azevedo
  • 通讯作者:
    Roger Azevedo
Novice and expert self-regulated learning phase transitions in medical diagnosis: Implications for adaptive and intelligent systems
  • DOI:
    10.1007/s11251-025-09729-4
  • 发表时间:
    2025-07-07
  • 期刊:
  • 影响因子:
    2.100
  • 作者:
    Elizabeth B. Cloude;Rachel Chapman;Roger Azevedo;Analia Castiglioni;Jeffrey LaRochelle;Caridad Hernandez;Dario Torre
  • 通讯作者:
    Dario Torre
Issues in dealing with sequential and temporal characteristics of self- and socially-regulated learning
  • DOI:
    10.1007/s11409-014-9123-1
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    4.800
  • 作者:
    Roger Azevedo
  • 通讯作者:
    Roger Azevedo

Roger Azevedo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Azevedo', 18)}}的其他基金

FW-HTF-P: Augmenting Healthcare Professionals’ Training, Expertise Development, and Diagnostic Reasoning with AI-based Immersive Technologies in Telehealth
FW-HTF-P:通过远程医疗中基于人工智能的沉浸式技术增强医疗保健专业人员的培训、专业知识发展和诊断推理
  • 批准号:
    2128684
  • 财政年份:
    2022
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
MetaDash: A Teacher Dashboard Informed by Real-Time Multichannel Self-Regulated Learning Data
MetaDash:由实时多渠道自我调节学习数据提供信息的教师仪表板
  • 批准号:
    1916417
  • 财政年份:
    2018
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Continuing Grant
Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
  • 批准号:
    1854175
  • 财政年份:
    2018
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
Convergence HTF: Collaborative: Workshop on Convergence Research about Multimodal Human Learning Data during Human Machine Interactions
融合 HTF:协作:人机交互过程中多模态人类学习数据的融合研究研讨会
  • 批准号:
    1744351
  • 财政年份:
    2017
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
MetaDash: A Teacher Dashboard Informed by Real-Time Multichannel Self-Regulated Learning Data
MetaDash:由实时多渠道自我调节学习数据提供信息的教师仪表板
  • 批准号:
    1660878
  • 财政年份:
    2017
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Continuing Grant
Student Support for the AIED 2009 Artificial Intelligence in Education Conference
学生对 AIED 2009 人工智能教育会议的支持
  • 批准号:
    0918684
  • 财政年份:
    2009
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
SGER: Detecting, Identifying, and Analyzing Cognitive, Affective, Metacognitive, and Motivational (CAMM) States During Self-Regulated Learning with Hypermedia
SGER:利用超媒体进行自我调节学习期间的认知、情感、元认知和动机 (CAMM) 状态的检测、识别和分析
  • 批准号:
    0841835
  • 财政年份:
    2008
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
CAREER: The Role of Self-Regulated Learning in Students' Understanding of Science with Hypermedia
职业:自我调节学习在学生利用超媒体理解科学方面的作用
  • 批准号:
    0731828
  • 财政年份:
    2007
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
Student Support for the Artificial Intelligence in Education Conference, Los Angeles, CA -July 9-13, 2007
学生对人工智能教育会议的支持,加利福尼亚州洛杉矶 - 2007 年 7 月 9 日至 13 日
  • 批准号:
    0726616
  • 财政年份:
    2007
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
CAREER: The Role of Self-Regulated Learning in Students' Understanding of Science with Hypermedia
职业:自我调节学习在学生利用超媒体理解科学方面的作用
  • 批准号:
    0133346
  • 财政年份:
    2002
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

FW-HTF-P: Supporting Nurse Workforce Development in Future Senior Care Facilities Using Intelligent Immersive Virtual Reality
FW-HTF-P:使用智能沉浸式虚拟现实支持未来高级护理机构的护士队伍发展
  • 批准号:
    2222485
  • 财政年份:
    2023
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
Intelligent Strategies for Optimal Virtual Network Function Placement in 5G Core
5G 核心网虚拟网络功能优化布局的智能策略
  • 批准号:
    576762-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Alliance Grants
Intelligent Virtual Human Companions
智能虚拟人伴侣
  • 批准号:
    DP210101682
  • 财政年份:
    2021
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Discovery Projects
v-powerChain: a distributed and intelligent virtual power plant for micro- to medium-scale renewables (project Continuity)
v-powerChain:用于中小型可再生能源的分布式智能虚拟发电厂(连续性项目)
  • 批准号:
    72445
  • 财政年份:
    2020
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Feasibility Studies
Boosting SME Survival Rate by enabling convenient and accessible Cash Flow Management via Artificially Intelligent Virtual Assistants.
通过人工智能虚拟助理实现方便易用的现金流管理,提高中小企业生存率。
  • 批准号:
    78064
  • 财政年份:
    2020
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Collaborative R&D
v-powerChain: a distributed and intelligent virtual power plant for micro- to medium-scale renewables
v-powerChain:面向中小型可再生能源的分布式智能虚拟发电厂
  • 批准号:
    106190
  • 财政年份:
    2020
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Collaborative R&D
PFI-RP: Intelligent Robot with Hologram-enhanced Virtual Reality for Effective Body Rehabilitation
PFI-RP:具有全息增强虚拟现实功能的智能机器人,可实现有效的身体康复
  • 批准号:
    1918534
  • 财政年份:
    2019
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
CHS: Small: Strong-Story Narrative Planning for Authoring Proactive Intelligent Virtual Environments
CHS:小型:用于创作主动智能虚拟环境的强故事叙事规划
  • 批准号:
    1911053
  • 财政年份:
    2019
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Standard Grant
Artificial Intelligent naturally communicating virtual characters
人工智能自然地交流虚拟角色
  • 批准号:
    541435-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Engage Grants Program
Autonomous Intelligent Virtual Expert for Haptics-Enabled Robotics-Assisted Surgical Training
用于触觉机器人辅助手术训练的自主智能虚拟专家
  • 批准号:
    516873-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 136.56万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了