CDS&E: Data-Driven Modeling and Analyses of Extreme Waves

CDS

基本信息

项目摘要

Rogue (freak) waves are rare events but they pose one of the greatest maritime risks. This Computational and Data-Enabled Science and Engineering (CDS&E) award would be used to develop a unified, data-driven framework and tools to advance the analysis and prediction of oceanic freak waves. The results of the research would provide key information for risk-based design of civil engineering and marine systems such as offshore platforms, wind turbines, and ships. The framework and tools would also benefit fundamental research on other complex systems that generate large amounts of data that must be processed-- ranging from manufacturing processes to disaster planning and response. The researchers' work on identifying signatures of rare events within big data sets could advance fundamental research in a variety of areas from medical diagnostics to airport security and the development of advanced materials. Collaborations with the National Oceanic and Atmospheric Administration (NOAA) and the US Navy will help to ensure that the work will be used to enhance weather forecasting and safety on the seas. The new framework is to be incorporated into a software package, which is used by NOAA, and is to be made available to researchers, students, and the public. Students will participate in the research and the results will be integrated into course materials and outreach activities for students in the University of Maryland, the US Naval Academy, and Women in Engineering. The researchers will also provide art-in-science displays on extreme wave phenomena for K-12 students. This research will be used to integrate statistical learning, signal processing, and Koopman operator theory to develop software tools and processes that can be configured to identify energy localizations across a variety of domains--including ocean waves-- to provide a prediction capability. As rare events, there are few measurements of rogue waves but there is a wealth of information on storms, other atmospheric events and wave behavior. An interdisciplinary team will integrate existing NOAA databases, General-Purpose Graphics Processing Units (GPGPU) computing, and the application of machine learning. The investigators will advance our understanding of how to use parallel processing of large-scale computations done by combining the processing power of GPUs and Central Processing Units (CPUs). This enhanced understanding will advance fundamental research in dynamical systems by enabling more effective use of a suite of simulation and signal processing tools, such as wavelets, Fast Fourier Transforms, and Monte Carlo simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
异常海浪是罕见事件,但它们构成了最大的海上风险之一。这一计算和数据支持科学与工程奖(CDS&E)将用于开发一个统一的、数据驱动的框架和工具,以推进海洋异常海浪的分析和预测。研究结果将为基于风险的土木工程和海洋系统设计提供关键信息,如海上平台、风力涡轮机和船舶。该框架和工具还将有利于对其他复杂系统的基础研究,这些系统产生必须处理的大量数据--从制造过程到灾害规划和应对。研究人员在大数据集中识别罕见事件特征的工作,可能会推动从医疗诊断到机场安检和先进材料开发等多个领域的基础研究。与美国国家海洋和大气管理局(NOAA)和美国海军的合作将有助于确保这项工作将用于加强天气预报和海上安全。新的框架将被整合到一个由NOAA使用的软件包中,并向研究人员、学生和公众提供。学生将参与这项研究,研究结果将被整合到马里兰大学、美国海军学院和工程女性学生的课程材料和推广活动中。研究人员还将为K-12学生提供关于极端海浪现象的科学艺术展示。这项研究将被用来整合统计学习、信号处理和库普曼算子理论,以开发软件工具和过程,这些工具和过程可以配置为识别各种领域的能量局部化--包括海浪--以提供预测能力。作为罕见事件,对异常海浪的测量很少,但有大量关于风暴、其他大气事件和海浪行为的信息。一个跨学科的团队将整合现有的NOAA数据库、通用图形处理单元(GPGPU)计算和机器学习的应用。研究人员将加深我们对如何使用并行处理通过结合GPU和中央处理器(CPU)的处理能力进行大规模计算的理解。通过更有效地使用一套模拟和信号处理工具,如小波、快速傅立叶变换和蒙特卡罗模拟,这一增强的理解将促进动力系统的基础研究。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data driven forecasting of aperiodic motions of non-autonomous systems
非自治系统非周期运动的数据驱动预测
  • DOI:
    10.1063/5.0045004
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Agarwal, V.
  • 通讯作者:
    Agarwal, V.
Data-driven, high resolution ocean wave forecasting and extreme wave predictions
数据驱动的高分辨率海浪预测和极端波浪预测
  • DOI:
    10.1016/j.oceaneng.2022.113271
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Breunung, Thomas;Balachandran, Balakumar
  • 通讯作者:
    Balachandran, Balakumar
Wave Propagation Studies in Numerical Wave Tanks with Weakly Compressible Smoothed Particle Hydrodynamics
  • DOI:
    10.3390/jmse9020233
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Samarpan Chakraborty;B. Balachandran
  • 通讯作者:
    Samarpan Chakraborty;B. Balachandran
Improving Deep Learning Interpretability by Saliency Guided Training
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ismail;H. C. Bravo;S. Feizi
  • 通讯作者:
    A. Ismail;H. C. Bravo;S. Feizi
Freak Wave Forecasting: A Data-Driven Approach
异常波浪预测:数据驱动的方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Balakumar Balachandran其他文献

Coupled piezoelastic airfoil oscillators: Nonlinear oscillations
耦合压电弹性翼型振荡器:非线性振荡
  • DOI:
    10.1016/j.jsv.2025.119226
  • 发表时间:
    2025-12-10
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Nishant Nemani;Sergio Preidikman;Balakumar Balachandran
  • 通讯作者:
    Balakumar Balachandran
Longitudinal nonlinear wave propagation through soft tissue.
通过软组织的纵向非线性波传播。
Missing values imputation in ocean buoy time series data
海洋浮标时间序列数据中的缺失值插补
  • DOI:
    10.1016/j.oceaneng.2024.120145
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
    5.500
  • 作者:
    Samarpan Chakraborty;Kayo Ide;Balakumar Balachandran
  • 通讯作者:
    Balakumar Balachandran
Prediction of freak waves from buoy measurements
基于浮标测量的巨浪预测
  • DOI:
    10.1038/s41598-024-66315-3
  • 发表时间:
    2024-07-18
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Thomas Breunung;Balakumar Balachandran
  • 通讯作者:
    Balakumar Balachandran
Cantilevers attached with bluff bodies: vortex-induced vibrations
  • DOI:
    10.1007/s11071-024-10679-8
  • 发表时间:
    2024-12-02
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Khawar Zamman Wani;Manoj Pandey;Balakumar Balachandran
  • 通讯作者:
    Balakumar Balachandran

Balakumar Balachandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Balakumar Balachandran', 18)}}的其他基金

GOALI/Collaborative Research: Nonlinear Energy Dynamics of Aerodynamically Coupled Oscillators
GOALI/合作研究:空气动力耦合振荡器的非线性能量动力学
  • 批准号:
    2131594
  • 财政年份:
    2021
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Continuing Grant
Fifth International Colloquium on Nonlinear Dynamics and Control of Deep Drilling Systems; College Park, Maryland; 1-3 June 2020
第五届深井钻井系统非线性动力学与控制国际学术研讨会;
  • 批准号:
    1939324
  • 财政年份:
    2019
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
Noise Influenced Energy Localization in Oscillator Arrays
振荡器阵列中噪声影响的能量定位
  • 批准号:
    1760366
  • 财政年份:
    2018
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Computational and Experimental Studies on Dynamic Interactions With Soft Soil
CDS
  • 批准号:
    1507612
  • 财政年份:
    2015
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
Exploiting Noise for Response Control: From Simple Nonlinear Systems to Slender Structures
利用噪声进行响应控制:从简单的非线性系统到细长结构
  • 批准号:
    1436141
  • 财政年份:
    2014
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
Standing on the Fourth Pillar: Data Enabled Understanding of Flapping Flight
站在第四根支柱上:数据支持对扑翼飞行的理解
  • 批准号:
    1250187
  • 财政年份:
    2012
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDI-Type II: Unravelling the Complexity of Extreme Waves: A Computational Quest
CDI-Type II:揭示极端波浪的复杂性:计算探索
  • 批准号:
    1125285
  • 财政年份:
    2011
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
Stochastic Resonance in Coupled, Nonlinear Oscillators
耦合非线性振荡器中的随机谐振
  • 批准号:
    0826173
  • 财政年份:
    2008
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
GOALI: Delicate Material Characterization Using Tapping Mode AFM: Soft Impact and Nonlinear Dynamics
GOALI:使用轻敲模式 AFM 进行精细材料表征:软冲击和非线性动力学
  • 批准号:
    0800471
  • 财政年份:
    2008
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
Novel Fiber Optic Acoustic Sensor System
新型光纤声学传感器系统
  • 批准号:
    0123222
  • 财政年份:
    2001
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245299
  • 财政年份:
    2023
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven fast methods for high-energy plasma astrophysics
CDS
  • 批准号:
    2307684
  • 财政年份:
    2023
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven modeling and analyses of CO2 transport in porous media
CDS
  • 批准号:
    2245484
  • 财政年份:
    2023
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Continuing Grant
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
  • 批准号:
    2152853
  • 财政年份:
    2022
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven Discovery of Probabilistic Closures in Turbulent Flows
CDS
  • 批准号:
    2152803
  • 财政年份:
    2022
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
  • 批准号:
    2328095
  • 财政年份:
    2022
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: Extracting Models from Data - A Novel Data-Driven Simulation Strategy for Reacting Flows
CDS
  • 批准号:
    1953350
  • 财政年份:
    2020
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
CDS&E: An Effective Thermal Simulation Methodology for GPGPUs Enabled by Data-Driven Model Reduction
CDS
  • 批准号:
    2003307
  • 财政年份:
    2020
  • 资助金额:
    $ 101.01万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了