CDS&E: Data-driven fast methods for high-energy plasma astrophysics

CDS

基本信息

  • 批准号:
    2307684
  • 负责人:
  • 金额:
    $ 49.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Significantly energetic astrophysical flows exhibiting plasma velocities near the speed of light are referred to as relativistic plasmas. These high-energy relativistic flows manifest in a diverse array of astrophysical phenomena involving compact objects. Noteworthy examples encompass core-collapse supernovae, jets and accretion flows surrounding massive compact objects like black holes and neutron stars, pulsar wind nebulae, and gamma-ray bursts. Moreover, astronomical observations consistently indicate the presence of dynamically significant magnetic fields within these highly compressible relativistic flows. Computer simulations serve as indispensable tools for researchers studying these plasmas, facilitating the comprehension of various physical processes associated with immensely energetic relativistic astrophysical flows. Scientists at the University of California, Santa Cruz aim to advance the precision of computer simulations concerning relativistic flows, as current computer algorithms encounter challenges in delivering high-fidelity, dependable numerical solutions. The team will develop a novel data-driven machine-learning strategy that enhances the computational performance and accuracy of numerical solutions for relativistic plasma flows. The expected outcomes of this project will be disseminated to the broader computational astrophysics community through publications in scientific journals and the release of open-source code for improved computer simulations. As part of this project, the PI will also advise and mentor undergraduate students from underrepresented groups via the Cal-Bridge and Lamat REU programs. The project's primary objective is to tackle unresolved challenges in simulating relativistic flows. Currently, simulating relativistic flows using modern shock-capturing schemes necessitates an impractically high grid resolution to achieve grid convergence. To address this issue, the team proposes the development of new data-driven, fast, a-priori shock-capturing methods for relativistic hydrodynamics and magnetohydrodynamics. The proposed approach aims to eliminate the need for computationally expensive conventional "limited reconstruction" of fluid data, which is a nonlinear numerical process required for numerical stability in standard modern shock-capturing methods. To overcome this limitation, the team will create high-order "unlimited" reconstruction algorithms using Gaussian Process (GP) reconstruction. By combining the GP method with a physics-informed artificial neural network, they will introduce a novel data-learned shock-capturing paradigm named the a-priori annMOOD (Artificial Neural Network Multidimensional Optimal Order Detection) method, which will replace the existing a-posteriori procedural shock-capturing MOOD method. The anticipated outcome of this project is a performance-enhanced relativistic (magneto)hydrodynamics (RMHD) solver optimized for massively parallel computing. By leveraging the power of data-driven techniques and high-order reconstruction algorithms, this project aims to significantly improve the efficiency and accuracy of simulating relativistic flows, thereby advancing understanding of these complex phenomena. The resulting solver will be capable of delivering reliable results while reducing the computational burden associated with achieving grid convergence.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
等离子体速度接近光速的高能天体物理流被称为相对论性等离子体。这些高能相对论流表现在涉及致密物体的各种天体物理现象中。值得注意的例子包括核心坍缩超新星,喷流和吸积流周围的大质量致密物体,如黑洞和中子星,脉冲星风星云,和伽马射线爆发。此外,天文观测一致表明,在这些高度可压缩的相对论性流动中存在动态显着的磁场。计算机模拟是研究这些等离子体的研究人员不可或缺的工具,有助于理解与高能相对论天体物理流相关的各种物理过程。圣克鲁斯加州大学的科学家们旨在提高计算机模拟相对论流动的精度,因为目前的计算机算法在提供高保真,可靠的数值解方面遇到了挑战。该团队将开发一种新的数据驱动的机器学习策略,以提高相对论等离子体流数值解的计算性能和准确性。该项目的预期成果将通过在科学期刊上发表文章和发布改进计算机模拟的开放源代码,传播给更广泛的计算天体物理学界。作为该项目的一部分,PI还将通过Cal-Bridge和Lamat REU计划为来自代表性不足群体的本科生提供建议和指导。该项目的主要目标是解决模拟相对论流动中尚未解决的挑战。目前,使用现代激波捕捉格式模拟相对论流动需要不切实际的高网格分辨率来实现网格收敛。为了解决这个问题,该团队建议开发新的数据驱动的,快速的,先验的冲击捕获方法,用于相对论流体力学和磁流体力学。所提出的方法的目的是消除需要计算昂贵的传统的“有限重建”的流体数据,这是一个非线性的数值过程中所需的数值稳定性,在标准的现代冲击捕捉方法。为了克服这一限制,该团队将使用高斯过程(GP)重建创建高阶“无限”重建算法。通过将GP方法与物理信息人工神经网络相结合,他们将引入一种新的数据学习冲击捕获范式,称为先验annMOOD(人工神经网络多维最优阶检测)方法,该方法将取代现有的后验程序冲击捕获MOOD方法。该项目的预期成果是一个性能增强的相对论(磁)流体动力学(RMHD)求解器优化大规模并行计算。通过利用数据驱动技术和高阶重建算法的力量,该项目旨在显着提高模拟相对论流动的效率和准确性,从而促进对这些复杂现象的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dongwook Lee其他文献

Period dependence of coherent oscillations in manganite superlattices
锰酸盐超晶格中相干振荡的周期依赖性
Entry control in network-on-chip for memory power reduction
片上网络的入口控制可降低内存功耗
Culturally Competent Approaches for Neuropsychological Assessment for Differential Diagnosis of Dementia of Korean-Speaking Patients in the United States.
用于美国韩语患者痴呆症鉴别诊断的神经心理学评估的文化适用方法。
Ensifer collicola sp. nov., a bacterium isolated from soil in South Korea
Ensifer collicola sp。
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3
  • 作者:
    J. Jang;Dongwook Lee;S. Cha;T. Seo
  • 通讯作者:
    T. Seo
Establishment and Characterization of Permanent Cell Lines from Oryzias dancena Embryos
Oryzias dancena 胚胎永久细胞系的建立和表征
  • DOI:
    10.5657/fas.2013.0177
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dongwook Lee;Min Sung Kim;Y. Nam;Dong;S. Gong
  • 通讯作者:
    S. Gong

Dongwook Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dongwook Lee', 18)}}的其他基金

Collaborative Research: Extreme-scale Ready High-order Methods for Astrophysical and Laboratory Turbulence
合作研究:天体物理和实验室湍流的极端规模就绪高阶方法
  • 批准号:
    1908834
  • 财政年份:
    2019
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
An Implicit Solver on Parallel Block-Structured Adaptive Mesh Grid for FLASH
FLASH 并行块结构自适应网格的隐式求解器
  • 批准号:
    0903997
  • 财政年份:
    2009
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Petascale algorithms for multi-body, fluid-structure interactions in viscous incompressible flows
合作研究:粘性不可压缩流中多体流固相互作用的 Petascale 算法
  • 批准号:
    0905059
  • 财政年份:
    2009
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
  • 批准号:
    31070748
  • 批准年份:
    2010
  • 资助金额:
    34.0 万元
  • 项目类别:
    面上项目
高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
  • 批准号:
    31060015
  • 批准年份:
    2010
  • 资助金额:
    25.0 万元
  • 项目类别:
    地区科学基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245299
  • 财政年份:
    2023
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven modeling and analyses of CO2 transport in porous media
CDS
  • 批准号:
    2245484
  • 财政年份:
    2023
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Elucidating and Controlling the Spectral, Spatial and Temporal Responses of Plasmonic Nanostructures based on a Data-Driven Approach
CDS
  • 批准号:
    2202268
  • 财政年份:
    2022
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Continuing Grant
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
  • 批准号:
    2152853
  • 财政年份:
    2022
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Data-driven Discovery of Probabilistic Closures in Turbulent Flows
CDS
  • 批准号:
    2152803
  • 财政年份:
    2022
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
  • 批准号:
    2328095
  • 财政年份:
    2022
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Extracting Models from Data - A Novel Data-Driven Simulation Strategy for Reacting Flows
CDS
  • 批准号:
    1953350
  • 财政年份:
    2020
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: An Effective Thermal Simulation Methodology for GPGPUs Enabled by Data-Driven Model Reduction
CDS
  • 批准号:
    2003307
  • 财政年份:
    2020
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
CDS&E: Data-Driven Modeling and Analyses of Extreme Waves
CDS
  • 批准号:
    1854532
  • 财政年份:
    2019
  • 资助金额:
    $ 49.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了