CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization

CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法

基本信息

  • 批准号:
    1855501
  • 负责人:
  • 金额:
    $ 10.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-10-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Bioassay data represent an extremely valuable source of experimental Big Data with rich content that have been substantially produced in the early stages of drug discovery for testing chemical compound bioactivities and identifying promising drug candidates. However, the power of such Big bioassay data has not been fully unleashed, particularly for the purposes of discovering novel knowledge and improving drug development. This is largely due to the fact that the exploration of a much larger space of bioassays has been fundamentally hindered by the less developed ability to identify and utilize the relations across bioassays. In this project, the PI and her team will develop novel computational methods and tools that can effectively explore a wide range of heterogeneous bioassays, identify experimentally unrevealed relations among them, and utilize the novel knowledge derived from them so as to improve compound prioritization. The research will bring scientific impacts and shed light on fully utilizing the existing wealth of Big Data, stimulating knowledge distillation in innovative manners, establishing visionary conceptual hypotheses and developing novel analytical techniques correspondingly. This research aims to solve critical problems in drug discovery through Big Data means, and has a great potential to improve drug candidate identification through accurate compound prioritization, and thus it will have far-reaching economic and societal impacts. The PI and her team will develop a computational framework to produce better compound ranking for each bioassay. This framework will consist of a local structure learning component and a global structure learning component to discover and leverage the compound ranking within a bioassay and ranking relations across bioassays, respectively. They will also develop new methods to better rank compounds under a combination of criteria. In particular, they will solve compound ranking based on activity and selectivity simultaneously by leveraging ranking difference across bioassays. The research will be innovative, both in terms of employing original computational models and methods into important problems in drug discovery, and in terms of developing unique methodologies and computational techniques for core Computer Science research. For drug discovery, the research will provide novel perspectives and methodologies as to how researchers can utilize the large-scale experimental data to solve important problems in drug discovery. For core Computer Science, the research will contribute a new solution framework and methods spanning the areas of data mining and machine learning. Specifically, the research will lead to novel methods for boosting ranking performance by actively including additional data, incorporating relevant information within a regularized optimization framework, deploying iterative procedures and greedy strategies for large-scale problems with multiple simultaneous tasks, etc. All these methods are generalizable to a variety of other Computer Science applications. For further information see the project web page: http://cs.iupui.edu/~xning/compRank.html
生物测定数据是实验大数据的一个非常有价值的来源,其内容丰富,在药物发现的早期阶段就已经大量产生,用于测试化合物的生物活性和识别有前途的候选药物。然而,这种生物测定大数据的力量还没有完全释放出来,特别是为了发现新知识和改善药物开发。这在很大程度上是由于这样的事实,即更大的生物测定空间的探索从根本上受到了识别和利用生物测定之间的关系的能力不发达的阻碍。在这个项目中,PI和她的团队将开发新的计算方法和工具,可以有效地探索各种各样的异质生物测定,识别实验未揭示的关系,并利用从中获得的新知识,以提高化合物的优先级。该研究将带来科学影响,并充分利用现有的大数据财富,以创新的方式刺激知识蒸馏,建立有远见的概念假设,并相应地开发新的分析技术。该研究旨在通过大数据手段解决药物发现中的关键问题,并具有通过准确的化合物优先级来改善候选药物识别的巨大潜力,因此将产生深远的经济和社会影响。PI和她的团队将开发一个计算框架,为每个生物测定产生更好的化合物排名。该框架将由局部结构学习组件和全局结构学习组件组成,以分别发现和利用生物测定内的化合物排名和生物测定之间的排名关系。他们还将开发新的方法,以更好地在一系列标准下对化合物进行排名。特别是,他们将通过利用生物测定之间的排名差异,同时解决基于活性和选择性的化合物排名。这项研究将是创新的,无论是在采用原始的计算模型和方法到药物发现的重要问题,并在开发独特的方法和计算技术的核心计算机科学研究方面。对于药物发现,该研究将为研究人员如何利用大规模实验数据解决药物发现中的重要问题提供新的视角和方法。对于核心计算机科学,该研究将为数据挖掘和机器学习领域提供新的解决方案框架和方法。具体而言,该研究将导致新的方法来提高排名性能,积极包括额外的数据,将相关信息纳入正则化优化框架,部署迭代程序和贪婪策略的大规模问题与多个同时进行的任务等,所有这些方法都可推广到各种其他计算机科学应用。欲了解更多信息,请访问项目网页:http://cs.iupui.edu/~xning/compRank.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xia Ning其他文献

Stationary statistical theory of two-surface multipactor regarding all impacts for efficient threshold analysis
关于有效阈值分析的所有影响的两表面多重因子的平稳统计理论
  • DOI:
    10.1063/1.5005042
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Lin Shu;Wang Rui;Xia Ning;Li Yongdong;Liu Chunliang
  • 通讯作者:
    Liu Chunliang
Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence
灰花忍冬 WRKY 家族基因的全转录组表征以及 LmWRKY16 在植物衰老中的作用
  • DOI:
    10.1007/s13258-021-01118-8
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Cao Zhengyan;Wu Peiyin;Gao Hongmei;Xia Ning;Jiang Ying;Tang Ning;Liu Guohua;Chen Zexiong
  • 通讯作者:
    Chen Zexiong
Exposure to oxygenated polycyclic aromatic hydrocarbons and endocrine dysfunction: Multi-level study based on hormone receptor responses
接触氧化多环芳烃与内分泌功能障碍:基于激素受体反应的多层次研究
  • DOI:
    10.1016/j.jhazmat.2024.136855
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Ying Ren;Yue Wang;Yang Wang;Xia Ning;Guangke Li;Nan Sang
  • 通讯作者:
    Nan Sang
Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets
一氧化氮在罗非鱼片气调包装中的应用
  • DOI:
    10.1016/j.foodcont.2018.11.043
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Wang Zi Chao;Yan Yuzhen;Fang Zhongxiang;Nisar Tanzeela;Sun Lijun;Guo Yurong;Xia Ning;Wang Huichun;Chen De Wei
  • 通讯作者:
    Chen De Wei
Di (2-ethylhexyl) phthalate reduces sperm motility by decreasing sperm tail energy supply
邻苯二甲酸二(2-乙基己基)酯通过降低精子尾部能量供应来降低精子活力。
  • DOI:
    10.1016/j.ecoenv.2025.117811
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    6.100
  • 作者:
    Xiao-lu Li;Qi-meng Li;Yuan-zhuo Zheng;Die Hu;Xiao-yue Cai;Ke Yin;Yin-yin Qi;Zi yu Cheng;Xia Ning;Yang Cai;Wei Wu;Ting-yuan Lin;Tao Xu;Ling-li Zhao
  • 通讯作者:
    Ling-li Zhao

Xia Ning的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xia Ning', 18)}}的其他基金

III:Small: Interpretable Deep Generative Models for Drug Development
III:Small:可解释的药物开发深度生成模型
  • 批准号:
    2133650
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization
CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法
  • 批准号:
    1566219
  • 财政年份:
    2016
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant

相似国自然基金

全钒液流电池负极V(II)/V(III)电化学氧化还原的催化机理研究
  • 批准号:
    2025JJ50094
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
吡咯烷生物碱所致肝窦阻塞综合征III区肝损伤的新机制——局部氨代谢紊乱
  • 批准号:
    JCZRYB202500652
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硅基III-V族亚微米线激光器的光场模式调控与耦合机理研究
  • 批准号:
    JCZRQN202501004
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
MXene/nZVI@FH材料微域层界面调控水中砷(III)氧化迁移机制
  • 批准号:
    2025JJ50319
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HOXC8/OPN/CD44/EGFR轴介导的奥沙利铂耐药性在III期右半结肠癌耐药进展中的研究
  • 批准号:
    2025JJ50694
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
AI结合超声原始射频信号评估Bethesda III/IV类甲状腺肿瘤包膜和血管侵犯研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
硫化砷靶向VPS4B-ESCRT-III调控自噬溶酶体通路逆转三阴性乳腺癌顺铂耐药性的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ASPGR与MRC2双受体介导铱(III)配合物 脂质体抗肝肿瘤研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Ap-Exo III 联合模式识别构建降尿酸药 物筛选新方法的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
经关节突截骨矫治III期Kummell病临床有效性分析
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
  • 批准号:
    2246796
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
  • 批准号:
    2237663
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Computational Development of Novel Dyslipidemia Therapeutic Candidates to Disrupt ApoC-III Conformation
破坏 ApoC-III 构象的新型血脂异常治疗候选物的计算开发
  • 批准号:
    10760187
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
CRII: III: Metadata-guided Imbalance-Modeling for Robust Computational Healthcare
CRII:III:元数据引导的稳健计算医疗保健不平衡建模
  • 批准号:
    2245920
  • 财政年份:
    2023
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212176
  • 财政年份:
    2022
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212175
  • 财政年份:
    2022
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: A consolidated framework of computational privacy and machine learning
合作研究:III:媒介:计算隐私和机器学习的综合框架
  • 批准号:
    2212174
  • 财政年份:
    2022
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
III: Small: RareXplain: A Computational Framework for Explainable Rare Category Analysis
III:小:RareXplain:可解释稀有类别分析的计算框架
  • 批准号:
    2117902
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Multi-level computational approaches to protein function prediction
III:媒介:协作研究:蛋白质功能预测的多级计算方法
  • 批准号:
    2210356
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Continuing Grant
Collaborative Research: CISE-MSI: RPEP: III: celtSTEM Research Collaborative: Catapulting MSI Faculty and Students into Computational Research.
合作研究:CISE-MSI:RPEP:III:celtSTEM 研究合作:将 MSI 教师和学生推向计算研究。
  • 批准号:
    2131293
  • 财政年份:
    2021
  • 资助金额:
    $ 10.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了