CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization
CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法
基本信息
- 批准号:1855501
- 负责人:
- 金额:$ 10.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bioassay data represent an extremely valuable source of experimental Big Data with rich content that have been substantially produced in the early stages of drug discovery for testing chemical compound bioactivities and identifying promising drug candidates. However, the power of such Big bioassay data has not been fully unleashed, particularly for the purposes of discovering novel knowledge and improving drug development. This is largely due to the fact that the exploration of a much larger space of bioassays has been fundamentally hindered by the less developed ability to identify and utilize the relations across bioassays. In this project, the PI and her team will develop novel computational methods and tools that can effectively explore a wide range of heterogeneous bioassays, identify experimentally unrevealed relations among them, and utilize the novel knowledge derived from them so as to improve compound prioritization. The research will bring scientific impacts and shed light on fully utilizing the existing wealth of Big Data, stimulating knowledge distillation in innovative manners, establishing visionary conceptual hypotheses and developing novel analytical techniques correspondingly. This research aims to solve critical problems in drug discovery through Big Data means, and has a great potential to improve drug candidate identification through accurate compound prioritization, and thus it will have far-reaching economic and societal impacts. The PI and her team will develop a computational framework to produce better compound ranking for each bioassay. This framework will consist of a local structure learning component and a global structure learning component to discover and leverage the compound ranking within a bioassay and ranking relations across bioassays, respectively. They will also develop new methods to better rank compounds under a combination of criteria. In particular, they will solve compound ranking based on activity and selectivity simultaneously by leveraging ranking difference across bioassays. The research will be innovative, both in terms of employing original computational models and methods into important problems in drug discovery, and in terms of developing unique methodologies and computational techniques for core Computer Science research. For drug discovery, the research will provide novel perspectives and methodologies as to how researchers can utilize the large-scale experimental data to solve important problems in drug discovery. For core Computer Science, the research will contribute a new solution framework and methods spanning the areas of data mining and machine learning. Specifically, the research will lead to novel methods for boosting ranking performance by actively including additional data, incorporating relevant information within a regularized optimization framework, deploying iterative procedures and greedy strategies for large-scale problems with multiple simultaneous tasks, etc. All these methods are generalizable to a variety of other Computer Science applications. For further information see the project web page: http://cs.iupui.edu/~xning/compRank.html
生物测定数据代表了具有丰富含量的实验大数据的极为宝贵的来源,这些数据在药物发现的早期阶段已经产生,用于测试化学复合生物活性和鉴定有希望的药物候选者。但是,这种大型生物测定数据的力量尚未完全释放,尤其是为了发现新知识并改善药物开发。这在很大程度上是由于以下事实:探索更大的生物测定空间已受到识别和利用整个生物测定之间关系的较少发达能力的阻碍。在这个项目中,PI和她的团队将开发新颖的计算方法和工具,这些方法和工具可以有效地探索广泛的异质生物测定,确定它们之间的实验未透露关系,并利用从中获得的新知识来改善复合优先级。这项研究将带来科学的影响,并阐明充分利用现有的大数据财富,刺激创新方式的知识蒸馏,建立有远见的概念假设并相应地开发新颖的分析技术。这项研究旨在通过大数据手段来解决药物发现中的关键问题,并具有通过准确的复合优先级改善药物识别的巨大潜力,因此它将产生深远的经济和社会影响。 PI和她的团队将开发一个计算框架,为每个生物测定法提供更好的复合排名。该框架将包括本地结构学习组件和一个全球结构学习组件,以分别在生物测定中发现和利用化合物排名和整个生物测定的排名。他们还将开发新的方法,以在标准组合结合下更好地排名化合物。特别是,他们将通过利用整个生物测定的排名差异来基于活动和选择性来解决复合排名。这项研究将是创新的,无论是将原始的计算模型和方法用于药物发现中的重要问题,以及为核心计算机科学研究开发独特的方法和计算技术而言。对于药物发现,该研究将提供有关研究人员如何利用大规模实验数据来解决药物发现中重要问题的新观点和方法。对于核心计算机科学,该研究将为涵盖数据挖掘和机器学习领域的新解决方案框架和方法。具体而言,这项研究将通过主动包括其他数据,将相关信息纳入正规化优化框架,部署迭代程序和贪婪的策略,以解决具有多个同时任务的大规模问题等。所有这些方法都是其他各种计算机科学应用程序都可以推广的大规模问题。有关更多信息,请参见项目网页:http://cs.iupui.edu/~xning/comprank.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xia Ning其他文献
Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets
一氧化氮在罗非鱼片气调包装中的应用
- DOI:
10.1016/j.foodcont.2018.11.043 - 发表时间:
2019-04 - 期刊:
- 影响因子:6
- 作者:
Wang Zi Chao;Yan Yuzhen;Fang Zhongxiang;Nisar Tanzeela;Sun Lijun;Guo Yurong;Xia Ning;Wang Huichun;Chen De Wei - 通讯作者:
Chen De Wei
Stationary statistical theory of two-surface multipactor regarding all impacts for efficient threshold analysis
关于有效阈值分析的所有影响的两表面多重因子的平稳统计理论
- DOI:
10.1063/1.5005042 - 发表时间:
2018-01 - 期刊:
- 影响因子:2.2
- 作者:
Lin Shu;Wang Rui;Xia Ning;Li Yongdong;Liu Chunliang - 通讯作者:
Liu Chunliang
Transcriptome-wide characterization of the WRKY family genes in Lonicera macranthoides and the role of LmWRKY16 in plant senescence
灰花忍冬 WRKY 家族基因的全转录组表征以及 LmWRKY16 在植物衰老中的作用
- DOI:
10.1007/s13258-021-01118-8 - 发表时间:
2021-06 - 期刊:
- 影响因子:2.1
- 作者:
Cao Zhengyan;Wu Peiyin;Gao Hongmei;Xia Ning;Jiang Ying;Tang Ning;Liu Guohua;Chen Zexiong - 通讯作者:
Chen Zexiong
Electrochemical immunosensors with protease as the signal label for the generation of peptide-Cu(II) complexes as the electrocatalysts toward water oxidation
以蛋白酶为信号标记的电化学免疫传感器,用于生成肽-Cu(II)复合物作为水氧化的电催化剂
- DOI:
10.1016/j.snb.2019.04.063 - 发表时间:
2019-07 - 期刊:
- 影响因子:8.4
- 作者:
Xia Ning;Deng Dehua;Yang Suling - 通讯作者:
Yang Suling
Recent Advances in Recommender Systems and Future Directions
推荐系统的最新进展和未来方向
- DOI:
10.1007/978-3-319-19941-2_1 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Xia Ning;G. Karypis - 通讯作者:
G. Karypis
Xia Ning的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xia Ning', 18)}}的其他基金
III:Small: Interpretable Deep Generative Models for Drug Development
III:Small:可解释的药物开发深度生成模型
- 批准号:
2133650 - 财政年份:2021
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant
CRII: III: Computational Methods to Explore Big Bioassay Data for Better Compound Prioritization
CRII:III:探索大生物测定数据以更好地确定化合物优先级的计算方法
- 批准号:
1566219 - 财政年份:2016
- 资助金额:
$ 10.79万 - 项目类别:
Continuing Grant
相似国自然基金
二维III-VI金属硫族化合物材料范德华异质结的能带结构和光电性质调控研究
- 批准号:11904085
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
二维层状III-VI族化合物中Rashba自旋劈裂的调控及机制研究
- 批准号:61874160
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
铜催化偶联反应中Cu(III)中间体生成机制的理论研究
- 批准号:21772020
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
缺陷对III族氮化物瞬态光谱的影响及调控研究
- 批准号:11704273
- 批准年份:2017
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于高通量计算的(III-V)1−x(II-VI)x型光解水制氢材料的筛选及性能调控
- 批准号:21771182
- 批准年份:2017
- 资助金额:63.0 万元
- 项目类别:面上项目
相似海外基金
CRII: III: Metadata-guided Imbalance-Modeling for Robust Computational Healthcare
CRII:III:元数据引导的稳健计算医疗保健不平衡建模
- 批准号:
2245920 - 财政年份:2023
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant
CRII: III: Novel Computational Social Choice Extensions for Highly Distributed Decision-Making Contexts
CRII:III:高度分布式决策环境的新型计算社会选择扩展
- 批准号:
1850355 - 财政年份:2019
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant
CRII: III: Computational framework for disparate data integration to study cancer drug resistance
CRII:III:用于研究癌症耐药性的不同数据整合的计算框架
- 批准号:
1850360 - 财政年份:2019
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant
CRII: III: Computational Methods to Explore the Role of Post-transcriptional Regulation in Cancer
CRII:III:探索转录后调控在癌症中作用的计算方法
- 批准号:
1755761 - 财政年份:2018
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant
CRII: III: RUI: Computational Approaches for Inferring the Evolutionary Histories of Cancer Genomes
CRII:III:RUI:推断癌症基因组进化史的计算方法
- 批准号:
1657380 - 财政年份:2017
- 资助金额:
$ 10.79万 - 项目类别:
Standard Grant