CAREER: A multi-scale and hierarchical computational framework to model III-nitride devices operating in the near-terahertz regime
职业:多尺度和分层计算框架,用于模拟在近太赫兹区域运行的 III 族氮化物器件
基本信息
- 批准号:2237663
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Wide and ultrawide bandgap III-nitride semiconductors have the foundational capability to meet the power and frequency requirements of near-terahertz communication systems with bandwidths exceeding 100 gigahertz. III-nitrides are also well positioned to be used in extreme environments, from the cryogenic limit to high temperatures. However, the demonstrated performance of III-nitride devices today is still below theoretical expectations, and the promise of III-nitrides for near-terahertz applications remains unfulfilled. Still experimental advances in isolation of theoretical advances are unlikely to change this existing landscape. To tackle this challenge, in this research, we will create a multi-scale and hierarchical computational framework that will provide a high fidelity insight into the underlying physics of III-nitride devices at different length-, time-, and temperature-scales. These fundamental insights are crucial for identifying material- and device-level advances that will push the bounds of III-nitrides’ based wireless technologies, be it for commercial wireless communication or scientific investigations in extreme environments. This research will have a far reaching impact in areas like healthcare, energy, transportation, space programs, and social and educational advancements. The models developed here will be fully open-source and available to researchers world-wide, amplifying the scale and impact of this research. We will inaugurate an afterschool semiconductors-focused summer camp for middle school students and collaborate with the Inclusivity, Diversity, Equity and Access Institute at the University to recruit low-income and minority students in the department and in our research lab. Web-based learning library on semiconductor physics will be developed to encourage students to think creatively about the possibilities of semiconductors in next-generation electronic systems. The success of this research, outreach and educational plan holds promise to result in decades of productive fundamental knowledge, contribute to translation into important near-terahertz technologies, and motivate the participation and retention of a diverse community of electrical engineers, materials scientists, and physicists.Modeling and simulation tools are the cornerstones of the physics-based and application-driven device and circuit design. Because III-nitride devices are intended for use in high-field and high-frequency applications, current models that neglect Maxwell’s full-wave effects and full-band physics fail at guiding experiments for technology optimization and cannot fully explore the materials-to-circuit design space, which is highly desirable for meeting target performance metrics. Thus, it is safe to say that a fundamental rethinking of computational methodologies for III-nitride devices will be a game-changer for a myriad of near-terahertz applications that can address some of the biggest challenges of current and future times. In this research, we will create a multi-scale computational framework that combines first-principles calculations through numerical transport simulations to a compact circuit model. This framework will identify new theoretical means to interrogate and control the high-frequency and off-equilibrium physics of the near-terahertz III-nitride devices. Salient features of this computational framework include full electronic bandstructure, hot-electron effects, self-heating, quantum-mechanical scattering, charge trapping, low-temperature physics, and full-wave electromagnetics. Because the numerical framework will be complemented with a SPICE-compatible and experimentally validated compact model, the proposed research will enable large-scale circuit simulations and systems design. The outcomes of this research will benefit many stake holders, from material scientists to circuit designers, and enable cross-disciplinary interactions that will set the global stage for multi-generational research in wide and ultrawide bandgap semiconductors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宽带隙和超宽带隙III族氮化物半导体具有满足带宽超过100千兆赫的近太赫兹通信系统的功率和频率要求的基本能力。III族氮化物也很适合用于极端环境,从低温极限到高温。然而,今天III族氮化物器件的表现仍然低于理论预期,III族氮化物用于近太赫兹应用的前景仍然没有实现。然而,孤立于理论进步的实验进步不太可能改变现有的格局。为了应对这一挑战,在这项研究中,我们将创建一个多尺度和分层的计算框架,该框架将在不同的长度、时间和温度尺度上提供对III族氮化物器件的底层物理的高保真度洞察。这些基本见解对于确定材料和器件级的进步至关重要,这些进步将推动基于III族氮化物的无线技术的界限,无论是商业无线通信还是极端环境中的科学研究。这项研究将在医疗保健、能源、交通、太空计划以及社会和教育进步等领域产生深远的影响。这里开发的模型将是完全开源的,可供世界各地的研究人员使用,扩大了这项研究的规模和影响。我们将为中学生开设一个以课外活动为重点的夏令营,并与大学的包容性,多样性,公平和准入研究所合作,在系里和我们的研究实验室里招募低收入和少数民族学生。将开发基于网络的半导体物理学习图书馆,以鼓励学生创造性地思考下一代电子系统中半导体的可能性。这项研究、推广和教育计划的成功有望带来数十年的丰富基础知识,有助于转化为重要的近太赫兹技术,并激励电气工程师、材料科学家和物理学家等多元化社区的参与和保留。建模和仿真工具是基于物理和应用驱动的器件和电路设计的基石。由于III族氮化物器件旨在用于高场和高频应用,因此忽略麦克斯韦的全波效应和全带物理的当前模型无法指导技术优化的实验,并且无法充分探索材料到电路设计空间,这对于满足目标性能指标是非常期望的。因此,可以肯定地说,对III族氮化物器件计算方法的根本性重新思考将改变无数近太赫兹应用的游戏规则,这些应用可以解决当前和未来的一些最大挑战。在这项研究中,我们将创建一个多尺度计算框架,将通过数值传输模拟的第一性原理计算与紧凑的电路模型相结合。该框架将确定新的理论手段来询问和控制近太赫兹III族氮化物器件的高频和非平衡物理。这个计算框架的突出特点包括全电子能带结构,热电子效应,自加热,量子力学散射,电荷捕获,低温物理和全波电磁学。由于数值框架将补充SPICE兼容和实验验证的紧凑模型,拟议的研究将使大规模的电路仿真和系统设计。这项研究的成果将使许多利益相关者受益,从材料科学家到电路设计师,并实现跨学科的互动,为宽带隙和超宽带隙半导体的多代研究奠定全球舞台。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shaloo Rakheja其他文献
Shaloo Rakheja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shaloo Rakheja', 18)}}的其他基金
IUCRC Phase I: University of Illinois at Urbana-Champaign (UIUC): Center for Advanced Semiconductor Chips with Accelerated Performance (ASAP)
IUCRC 第一阶段:伊利诺伊大学厄巴纳-香槟分校 (UIUC):具有加速性能的先进半导体芯片中心 (ASAP)
- 批准号:
2231625 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
79th Device Research Conference. To Be Held Virtually June 20-23, 2021.
第 79 届设备研究会议。
- 批准号:
2133323 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
IUCRC Planning Grant University of Illinois: Center for Aggressive Scaling by Advanced Processes for Electronics and Photonics (ASAP)
IUCRC 规划拨款伊利诺伊大学:电子和光子学先进工艺积极扩展中心 (ASAP)
- 批准号:
2052749 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
- 批准号:
1930620 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
SHF: EAGER: Toward Energy-Efficient Heterogeneous Computing Integrating Polymorphic Magnetic and CMOS Devices
SHF:EAGER:迈向集成多态磁性和 CMOS 器件的节能异构计算
- 批准号:
2021230 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CRII: SHF: WINGS -- Wireless Interconnects for Next-Generation Systems
CRII:SHF:WINGS——下一代系统的无线互连
- 批准号:
1565656 - 财政年份:2016
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
相似国自然基金
基于Multi-Pass Cell的高功率皮秒激光脉冲非线性压缩关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Multi-decadeurbansubsidencemonitoringwithmulti-temporaryPStechnique
- 批准号:
- 批准年份:2022
- 资助金额:80 万元
- 项目类别:
High-precision force-reflected bilateral teleoperation of multi-DOF hydraulic robotic manipulators
- 批准号:52111530069
- 批准年份:2021
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
基于8色荧光标记的Multi-InDel复合检测体系在降解混合检材鉴定的应用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘-印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2021
- 资助金额:15 万元
- 项目类别:
大规模非确定图数据分析及其Multi-Accelerator并行系统架构研究
- 批准号:62002350
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
3D multi-parameters CEST联合DKI对椎间盘退变机制中微环境微结构改变的定量研究
- 批准号:82001782
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
高速Multi-bit/cycle SAR ADC性能优化理论研究
- 批准号:62004023
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于multi-SNP标记及不拆分策略的复杂混合样本身份溯源研究
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
大地电磁强噪音压制的Multi-RRMC技术及其在青藏高原东南缘—印支块体地壳流追踪中的应用
- 批准号:
- 批准年份:2020
- 资助金额:万元
- 项目类别:国际(地区)合作与交流项目
相似海外基金
CAREER: A Multi-faceted Framework to Enable Computationally Efficient Evaluation and Automatic Design for Large-scale Economics-driven Transmission Planning
职业生涯:一个多方面的框架,可实现大规模经济驱动的输电规划的计算高效评估和自动设计
- 批准号:
2339956 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Strategic Interactions, Learning, and Dynamics in Large-Scale Multi-Agent Systems: Achieving Tractability via Graph Limits
职业:大规模多智能体系统中的战略交互、学习和动态:通过图限制实现可处理性
- 批准号:
2340289 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Structure Exploiting Multi-Agent Reinforcement Learning for Large Scale Networked Systems: Locality and Beyond
职业:为大规模网络系统利用多智能体强化学习的结构:局部性及其他
- 批准号:
2339112 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Multi-scale Manufacturing of Porous Carbon Nanostructures
职业:多孔碳纳米结构的多规模制造
- 批准号:
2338386 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: Evolutionary Games in Dynamic and Networked Environments for Modeling and Controlling Large-Scale Multi-agent Systems
职业:动态和网络环境中的进化博弈,用于建模和控制大规模多智能体系统
- 批准号:
2239410 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Multi-aperture 3D microscopy for cellular-scale measurement over macroscopic volumes
职业:用于宏观体积细胞尺度测量的多孔 3D 显微镜
- 批准号:
2238845 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Resolving multi-scale ecological consequences of thermal refuges amidst climate warming
职业:解决气候变暖过程中避难所的多尺度生态后果
- 批准号:
2236526 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Additive Manufacturing with Acoustically Assembled Multi-Scale Composite Materials
职业:使用声学组装的多尺度复合材料进行增材制造
- 批准号:
2240170 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
CAREER: From Dust to Drought: Understanding the Multi-Scale Relationship between the Saharan Air Layer and Caribbean Water Stress
职业:从灰尘到干旱:了解撒哈拉空气层与加勒比水压力之间的多尺度关系
- 批准号:
2236655 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant