Topological Methods for Discrete Problems
离散问题的拓扑方法
基本信息
- 批准号:1855591
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We often encounter situations with inherent symmetries, such as attempting to fairly divide a good among several parties: If our division is truly fair, we could permute the pieces without changing the outcome. This viewpoint arises also in more abstract settings, such as decomposing a data set in a balanced way with linear equations to efficiently handle it, or evaluating a function in a fixed set of points to compute its integral. Note that if we introduce subjective preferences of the involved parties to our fair division problem, the inherent symmetries disappear. Again this loss of symmetry is a natural phenomenon for the class of the problems mentioned so far. This project develops methods to approach such problems, even in the absence of symmetry. Notably, the methods are topological, that is, continuous, whereas the problems have a combinatorial, or discrete, flavor. Thus this research builds bridges between different branches of mathematics, making problems in one branch amenable to the tools of another.The PI will conduct research on a selection of combinatorial problems that benefit from a geometric viewpoint. Among the themes of research are intersection patterns of sets, both in a purely combinatorial setting (such as hypergraph matchings and design theory) as well as in geometric settings (such as intersections of convex sets and non-embeddability of complexes into Euclidean space), and the study of structured sets in abelian groups (such as sumsets, the structure of sets containing zero-sums, and spherical designs). These are problems, where one is interested in constructing an object or showing its non-existence, but global obstructions emerge---local solutions do not glue together to form the desired object. Geometry and topology provide a suitable framework to organize these non-local phenomena and detect such obstructions in the large. This research focuses on problems that admit geometric generalizations and aims to delimit rigid discrete results from their more flexible geometric counterparts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
我们经常遇到具有内在对称性的情况,例如试图在几方之间公平地划分一种商品:如果我们的划分是真正公平的,我们可以在不改变结果的情况下置换这些碎片。这种观点也出现在更抽象的设置中,例如用线性方程以平衡的方式分解数据集以有效地处理它,或者在固定的点集中评估函数以计算其积分。请注意,如果我们将参与方的主观偏好引入到公平分配问题中,固有的对称性就会消失。同样,这种对称性的丧失对于到目前为止所提到的这类问题来说也是一种自然现象。该项目开发了解决这些问题的方法,即使在缺乏对称性的情况下。值得注意的是,这些方法是拓扑的,也就是说,是连续的,而这些问题具有组合的,或离散的味道。因此,这项研究在数学的不同分支之间建立了桥梁,使一个分支中的问题适用于另一个分支的工具。PI将从几何观点出发,对一些组合问题进行研究。研究的主题包括集合的交集模式,包括在纯粹的组合环境(如超图匹配和设计理论)以及几何环境(如凸集的交集和复形到欧几里得空间的不可嵌入性),以及阿贝尔群中结构化集合的研究(如和集,包含零和的集合结构和球形设计)。这些问题,其中一个感兴趣的是构建一个对象或显示其不存在,但全球障碍出现-本地解决方案不粘在一起,形成所需的对象。几何学和拓扑学提供了一个合适的框架来组织这些非局部现象,并在大范围内检测这些障碍物。这项研究的重点是承认几何概括的问题,旨在从更灵活的几何对应物中划分刚性离散结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spaces of embeddings: Nonsingular bilinear maps, chirality, and their generalizations
嵌入空间:非奇异双线性映射、手性及其概括
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Frick, Florian;Harrison, Michael
- 通讯作者:Harrison, Michael
Vietoris thickenings and complexes have isomorphic homotopy groups
- DOI:10.1007/s41468-022-00106-5
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Henry Adams;F. Frick;Žiga Virk
- 通讯作者:Henry Adams;F. Frick;Žiga Virk
The Topology of Projective Codes and the Distribution of Zeros of Odd Maps
射影码的拓扑与奇映射的零点分布
- DOI:10.1307/mmj/20216170
- 发表时间:2023
- 期刊:
- 影响因子:0.9
- 作者:Adams, Henry;Bush, Johnathan;Frick, Florian
- 通讯作者:Frick, Florian
Coupled embeddability
耦合嵌入性
- DOI:10.1112/blms.12646
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Frick, Florian;Harrison, Michael
- 通讯作者:Harrison, Michael
METRIC THICKENINGS, BORSUK–ULAM THEOREMS, AND ORBITOPES
- DOI:10.1112/mtk.12010
- 发表时间:2019-07
- 期刊:
- 影响因子:0.8
- 作者:Henry Adams;Johnathan Bush;F. Frick
- 通讯作者:Henry Adams;Johnathan Bush;F. Frick
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Frick其他文献
Topological methods in zero-sum Ramsey theory
零和拉姆齐理论中的拓扑方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Florian Frick;Jacob Lehmann Duke;Meenakshi McNamara;Hannah Park;Steven Raanes;Steven Simon;Darrion Thornburgh;Zoe Wellner - 通讯作者:
Zoe Wellner
A modular configuration and management framework for distributed real-time applications based on converged networks using TSN
- DOI:
10.1016/j.procir.2023.06.008 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Stefan Oechsle;Florian Frick;Armin Lechler;Alexander Verl - 通讯作者:
Alexander Verl
Hausdorff vs Gromov–Hausdorff Distances
- DOI:
10.1007/s00454-025-00722-9 - 发表时间:
2025-02-19 - 期刊:
- 影响因子:0.600
- 作者:
Henry Adams;Florian Frick;Sushovan Majhi;Nicholas McBride - 通讯作者:
Nicholas McBride
Methodology and Implementation for Monitoring Precise Time Synchronisation in TSN
TSN 中精确时间同步监控的方法和实现
- DOI:
10.1109/indin51400.2023.10217839 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kedar Naik;Dominik Welte;Stefan Oechsle;Florian Frick;A. Lechler;Manuel Schappacher;A. Sikora - 通讯作者:
A. Sikora
Florian Frick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florian Frick', 18)}}的其他基金
CAREER: Geometric and Topological Combinatorics
职业:几何和拓扑组合学
- 批准号:
2042428 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NEWWAVE: New methods for analysing travelling waves in discrete systems with applications to neuroscience
NEWWAVE:分析离散系统中行波的新方法及其在神经科学中的应用
- 批准号:
EP/Y027531/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship
Symmetry Methods for Discrete Equations and Their Applications
离散方程的对称性方法及其应用
- 批准号:
24K06852 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unifying discrete and continuous methods in quantum information theory
统一量子信息论中的离散和连续方法
- 批准号:
FT230100571 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
ARC Future Fellowships
Various discrete structures and their analysis methods
各种离散结构及其分析方法
- 批准号:
23K03201 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
NSF Postdoctoral Fellowship in Biology: Evaluate how the spatial distribution of discrete genetic patterns influences ancestry estimation in spatial and nonspatial methods
NSF 生物学博士后奖学金:评估离散遗传模式的空间分布如何影响空间和非空间方法中的祖先估计
- 批准号:
2209320 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
REU Site: Research Challenges of Computational Methods in Discrete Mathematics
REU 网站:离散数学计算方法的研究挑战
- 批准号:
2150299 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Some Problems in Spectral Methods and Discrete Probability
谱方法和离散概率中的一些问题
- 批准号:
RGPIN-2019-06751 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual
Cubical methods in discrete homotopy theory
离散同伦理论中的三次方法
- 批准号:
564571-2021 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
University Undergraduate Student Research Awards
Discrete Optimization Methods for Computer Vision
计算机视觉的离散优化方法
- 批准号:
RGPIN-2017-05413 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Discovery Grants Program - Individual