CAREER: Geometric and Topological Combinatorics
职业:几何和拓扑组合学
基本信息
- 批准号:2042428
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geometry and topology are mathematical branches that provide methods that measure phenomena that are global instead of local. If a problem's resolution depends on the aggregate of its information then geometric methods are useful in detecting global obstructions. Numerous problems across mathematics and its applications are global in this sense, ranging from data science to economics. The research supported by this grant will develop new topological and geometric methods to tackle problems further afield, primarily discrete, non-continuous problems. This promises new insights at the confluence of combinatorics, geometry, and topology. Students at all stages will be involved in the research effort supported by this grant.Among the general goals of the research program are the following: In applications of equivariant topology one often requires that a certain parameter has to be a prime power, and methods fail outside of this prime power case. Recent research of the PI has suggested that one may effectively circumvent this prime power requirement via a synthesis of topological and combinatorial techniques. This will be further developed. The application of topological methods brings about geometric generalizations of combinatorial problems. To understand the limitations of topological techniques one has to study those types of problems, where geometric results deviate considerably from their combinatorial special cases. A central goal will thus be to delimit rigid combinatorial results from their flexible geometric counterparts. In addition to showing the existence of a solution to some combinatorial problem, one is often interested in quantifying how rich the space of solutions is. General topological methods will be developed that provide lower bounds for the topology of the space of solutions of a given combinatorial problem.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何学和拓扑学是数学分支,提供了测量全局而不是局部现象的方法。如果一个问题的解决方案取决于其信息的聚合,那么几何方法在检测全局障碍物时是有用的。从这个意义上说,数学及其应用中的许多问题都是全球性的,从数据科学到经济学。该资助支持的研究将开发新的拓扑和几何方法来解决更远的问题,主要是离散、非连续问题。这预示着在组合学、几何学和拓扑学的交汇处有新的见解。所有阶段的学生都将参与这项资助支持的研究工作。研究计划的总体目标如下:在等变拓扑的应用中,人们经常要求某个参数必须是素数幂,而方法在这个素数幂情况之外失败。PI最近的研究表明,人们可以有效地规避这一主要的权力要求,通过综合的拓扑和组合技术。这将得到进一步发展。拓扑方法的应用带来了组合问题的几何推广。要了解拓扑技术的局限性之一,必须研究这些类型的问题,其中几何结果大大偏离其组合的特殊情况。因此,一个中心目标将是从灵活的几何对应物中划分出刚性的组合结果。除了显示一些组合问题的解的存在性之外,人们通常对量化解的空间有多丰富感兴趣。一般的拓扑方法将被开发,提供一个给定的组合problem.This奖项反映了NSF的法定使命的解决方案的空间拓扑的下限,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Vietoris thickenings and complexes have isomorphic homotopy groups
- DOI:10.1007/s41468-022-00106-5
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Henry Adams;F. Frick;Žiga Virk
- 通讯作者:Henry Adams;F. Frick;Žiga Virk
Coupled embeddability
耦合嵌入性
- DOI:10.1112/blms.12646
- 发表时间:2022
- 期刊:
- 影响因子:0.9
- 作者:Frick, Florian;Harrison, Michael
- 通讯作者:Harrison, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Florian Frick其他文献
Topological methods in zero-sum Ramsey theory
零和拉姆齐理论中的拓扑方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Florian Frick;Jacob Lehmann Duke;Meenakshi McNamara;Hannah Park;Steven Raanes;Steven Simon;Darrion Thornburgh;Zoe Wellner - 通讯作者:
Zoe Wellner
A modular configuration and management framework for distributed real-time applications based on converged networks using TSN
- DOI:
10.1016/j.procir.2023.06.008 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:
- 作者:
Stefan Oechsle;Florian Frick;Armin Lechler;Alexander Verl - 通讯作者:
Alexander Verl
Hausdorff vs Gromov–Hausdorff Distances
- DOI:
10.1007/s00454-025-00722-9 - 发表时间:
2025-02-19 - 期刊:
- 影响因子:0.600
- 作者:
Henry Adams;Florian Frick;Sushovan Majhi;Nicholas McBride - 通讯作者:
Nicholas McBride
Methodology and Implementation for Monitoring Precise Time Synchronisation in TSN
TSN 中精确时间同步监控的方法和实现
- DOI:
10.1109/indin51400.2023.10217839 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Kedar Naik;Dominik Welte;Stefan Oechsle;Florian Frick;A. Lechler;Manuel Schappacher;A. Sikora - 通讯作者:
A. Sikora
Florian Frick的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Florian Frick', 18)}}的其他基金
Topological Methods for Discrete Problems
离散问题的拓扑方法
- 批准号:
1855591 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multi-gap topological physics: from a new geometric perspective to materials
多间隙拓扑物理:从新的几何视角看材料
- 批准号:
EP/X025829/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Geometric Techniques for Topological Graph Algorithms
职业:拓扑图算法的几何技术
- 批准号:
2237288 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Algorithmic, topological and geometric aspects of infinite groups, monoids and inverse semigroups
无限群、幺半群和逆半群的算法、拓扑和几何方面
- 批准号:
EP/V032003/1 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Topological and Geometric Modeling and Computation of Structures and Functions in Single-Cell Omics Data
单细胞组学数据中结构和功能的拓扑和几何建模及计算
- 批准号:
2151934 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133851 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
- 批准号:
2133822 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDS&E: Extracting Physics from High-Fidelity Simulations of Atomization using Geometric and Topological Data Analysis
CDS
- 批准号:
2152737 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant