Unique Continuation and Regularity of CR Mappings

CR映射的独特延续性和规律性

基本信息

  • 批准号:
    1855737
  • 负责人:
  • 金额:
    $ 17.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The main parts of the mathematics research project by Shiferaw Berhanu involve the investigation of the validity of unique continuation for solutions of systems of first order partial differential equations and second order partial differential equations. The project includes problems on the regularity of certain mappings between submanifolds in complex spaces. The second order partial differential equations under study arise in the study of electromagnetic radiation, optics, seismology, and acoustics. Some of the equations that are to be investigated are relevant to solid mechanics where they can be used to model elasto-static deformations. They are also of relevance in fluid mechanics since they can be employed to describe the motion of an incompressible viscous fluid. Results from the project have important applications to function theory of Several Complex Variables, CR Geometry, and linear as well as nonlinear partial differential equations. The project will provide several interesting problems to graduate students and young researchers.The first main problem concerns understanding geometric conditions on two Cauchy-Riemann submanifolds that guarantee unique continuation for a CR mapping between them that vanishes to infinite order at a point. The second problem concerns the unique continuation at the boundary for solutions of real analytic, second order or higher order, elliptic partial differential equations. The third problem involves the regularity of CR mappings between Cauchy-Riemann submanifolds. The methods to be employed include the theory of analytic discs, nonlinear Fourier transforms (FBI transforms), and a precise analysis of Green's functions for the second and higher order operators under study.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Shiferaw Berhanu的数学研究项目的主要内容是研究一阶偏微分方程组和二阶偏微分方程组的解的唯一延拓的有效性。该项目包括关于复空间中子流形之间某些映射的正则性的问题。所研究的二阶偏微分方程组出现在电磁辐射、光学、地震学和声学的研究中。要研究的一些方程与固体力学有关,可以用来模拟弹性静力变形。它们在流体力学中也是有意义的,因为它们可以用来描述不可压缩粘性流体的运动。该项目的结果在多复变函数论、CR几何以及线性和非线性偏微分方程组中都有重要的应用。这个项目将为研究生和年轻的研究人员提供几个有趣的问题。第一个主要问题涉及理解两个Cauchy-Riemann子流形上的几何条件,这些条件保证它们之间的CR映射在一点消失到无穷级的唯一连续性。第二个问题涉及实解析二阶或高阶椭圆型偏微分方程解在边界上的唯一延拓。第三个问题涉及柯西-黎曼子流形之间CR映射的正则性。将采用的方法包括解析圆盘理论、非线性傅立叶变换(FBI变换)以及对研究中的二阶和高阶算子的格林函数的精确分析。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A local Hopf lemma and unique continuation for elliptic equations
椭圆方程的局部 Hopf 引理和唯一延拓
  • DOI:
    10.1016/j.aim.2021.107912
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    S. Berhanu
  • 通讯作者:
    S. Berhanu
Boundary unique continuation for the Laplace equation and the biharmonic operator
拉普拉斯方程和双调和算子的边界唯一延拓
On holomorphic extendability and the strong maximum principle for CR functions
关于CR函数的全纯可拓性和强极大值原理
Unique continuation for first order systems of pies
馅饼一阶系统的独特延续
A GENERALIZATION OF A MICROLOCAL VERSION OF BOCHNER’S THEOREM
博赫纳定理的微局部版本的推广
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiferaw Berhanu其他文献

Shiferaw Berhanu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shiferaw Berhanu', 18)}}的其他基金

Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2323531
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2152487
  • 财政年份:
    2022
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
The Regularity of Cauchy-Riemann Mappings and Solutions of Systems of Nonlinear Partial Differential Equations
柯西-黎曼映射的正则性与非线性偏微分方程组的解
  • 批准号:
    1600024
  • 财政年份:
    2016
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Workshop on partial differential equations and several complex variables
偏微分方程和几个复变量研讨会
  • 批准号:
    1500692
  • 财政年份:
    2015
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Workshop in Partial Differential Equations and Several Complex Variables
偏微分方程和几个复变量研讨会
  • 批准号:
    1305167
  • 财政年份:
    2013
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Semilinear and nonlinear pdes in CR manifolds and complex variables
CR 流形和复变量中的半线性和非线性偏微分方程
  • 批准号:
    1300026
  • 财政年份:
    2013
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Workshop on partial differential equations and several complex variables
偏微分方程和几个复变量研讨会
  • 批准号:
    1101219
  • 财政年份:
    2011
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Semilinear and nonlinear pdes motivated by complex variables and CR manifolds and the Bochner extension phenomenon
由复变量和 CR 流形以及 Bochner 扩展现象驱动的半线性和非线性偏微分方程
  • 批准号:
    1001283
  • 财政年份:
    2010
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Linear and nonlinear problems in CR manifolds
CR 流形中的线性和非线性问题
  • 批准号:
    0714696
  • 财政年份:
    2007
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
International: Project On Complex Vector Fields
国际:复杂向量场项目
  • 批准号:
    0203005
  • 财政年份:
    2002
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant

相似海外基金

Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Standard Grant
Refresh, Continuation, and Science Exploitation of the Birmingham Solar-Oscillations Network (BiSON)
伯明翰太阳振荡网络(BiSON)的更新、延续和科学开发
  • 批准号:
    ST/Z000025/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Development of support measures and clarification of promotion factors for the expansion and continuation of intergenerational programs
制定支持措施并明确促进因素,以扩大和延续代际计划
  • 批准号:
    23H00906
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Superconductor-(Metal)-Insulator Transitions: Understanding the Emergence of Metallic States, A Continuation Proposal
超导体-(金属)-绝缘体转变:了解金属态的出现,延续提案
  • 批准号:
    2307132
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
Continuation of the NuMoM2b Heart Health Study
NuMoM2b 心脏健康研究的延续
  • 批准号:
    10905863
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
Arizona Department of Health Services, MFRPS Maintenance and continuation of the State Manufactured Food Regulatory Progam
亚利桑那州卫生服务部、MFRPS 维护和延续州制造食品监管计划
  • 批准号:
    10829093
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
Nonlinear Ground Vibration Testing using Control-based Continuation
使用基于控制的延续进行非线性地面振动测试
  • 批准号:
    EP/W032236/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Research Grant
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
  • 批准号:
    EP/X026027/1
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Fellowship
CyberCorps: Scholarship for Service (Renewal): A Continuation Program at Mississippi State University
Cyber​​Corps:服务奖学金(续签):密西西比州立大学的继续项目
  • 批准号:
    2234515
  • 财政年份:
    2023
  • 资助金额:
    $ 17.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了