Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation

卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓

基本信息

  • 批准号:
    9706892
  • 负责人:
  • 金额:
    $ 11.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9706892 Garofalo The proposal is concerned with three projects: 1) Optimal regularity for nonlinear pde's and systems in Carnot-Caratheodory (CC) spaces and the applications of this theory to geometry, isoperimetric and Sobolev inequalities, minimal surfaces in (CC) spaces and their regularity, Dirichlet problem in nilpotent Lie groups: Connection between harmonic measure and perimeter, harmonic maps between CR manifolds. 2) Symmetry in overdetermined boundary value problems, both interior and exterior, in Euclidean and CR geometry, minimizers in the isoperimetric and Sobolev inequalities in the Heisenberg group, a conjecture of E. De Giorgi and its parabolic counterpart. 3) Unique continuation for sub-elliptic operators, applications to scattering, inverse problems on the Heisenberg group, unique continuation for nonlinear equations of p-Laplacian type. The proposed research sits at the confluence of two main areas of interest in mathematics known as partial differential equations and geometry. Both areas find their origin and motivation in problems arising in the observation and description of natural phenomena, at every scale. A main focus of the proposed research is, e.g., the reconstruction of the shape of a body knowing some quantities that can be measured on the surface that surrounds the body. Such a problem has a great relevance in the applied sciences and is especially important in areas of Federal strategic interest ranging from computerized tomography, to biotechnology, to control of the core of a nuclear reactor, etc. The proposed research will also contribute to the development of human resources through the involvement of young investigators (doctoral students). The principal investigator is also writing a book which will focus on those aspects of the program that has been developed over the past few years in collaboration with several doctoral students.
9706892 Garofalo 本计划涉及三个方面:1)Carnot-Caratheodory(CC)空间中非线性方程组和方程组的最优正则性及其在几何、等周不等式和Sobolev不等式、(CC)空间中极小曲面及其正则性、幂零李群中的Dirichlet问题、调和测度与周长的关系、CR流形间调和映射等方面的应用。2)超定边值问题的对称性,包括内部和外部,在欧几里得几何和CR几何中,在等周和Sobolev不等式中的极小化,在Heisenberg群中,E.德·乔治和它的抛物线对应物。3)次椭圆算子的唯一延拓,散射的应用,海森堡群上的反问题,非线性p-Laplacian型方程的唯一延拓。 这项拟议的研究处于数学中两个主要感兴趣领域的交汇点,即偏微分方程和几何。这两个领域都在观察和描述自然现象中出现的问题中找到了它们的起源和动机,在每一个尺度上。拟议研究的一个主要重点是,例如,物体形状的重建知道一些可以在物体周围的表面上测量的量。这样一个问题有很大的相关性,在应用科学,特别是在联邦的战略利益,从计算机断层扫描,生物技术,控制核反应堆的核心等领域的重要性,拟议的研究也将有助于通过年轻的研究人员(博士生)的参与人力资源的发展。首席研究员还在写一本书,重点介绍过去几年与几名博士生合作开发的项目的各个方面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicola Garofalo其他文献

Asymptotic expansions for a class of Fourier integrals and applications to the Pompeiu problem
  • DOI:
    10.1007/bf02820458
  • 发表时间:
    1991-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Nicola Garofalo;Fausto Segala
  • 通讯作者:
    Fausto Segala
Absence of positive Eigenvalues for a class of subelliptic operators
  • DOI:
    10.1007/bf01446315
  • 发表时间:
    1996-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Nicola Garofalo;Zhongwei Shen
  • 通讯作者:
    Zhongwei Shen
On an evolution equation in sub-Finsler geometry
  • DOI:
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nicola Garofalo
  • 通讯作者:
    Nicola Garofalo
Overdetermined problems in groups of Heisenberg type: Conjectures and partial results
海森堡型群中的超定问题:猜想与部分结果
  • DOI:
    10.1016/j.jfa.2024.110588
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Nicola Garofalo;Dimiter Vassilev
  • 通讯作者:
    Dimiter Vassilev
On the forward in time propagation of zeros in fractional heat type problems
  • DOI:
    10.1007/s00013-023-01886-7
  • 发表时间:
    2023-07-18
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Agnid Banerjee;Nicola Garofalo
  • 通讯作者:
    Nicola Garofalo

Nicola Garofalo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicola Garofalo', 18)}}的其他基金

Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
  • 批准号:
    1001317
  • 财政年份:
    2010
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
  • 批准号:
    0701001
  • 财政年份:
    2007
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
  • 批准号:
    0300477
  • 财政年份:
    2003
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Non-linear equations in analysis and geometry
分析和几何中的非线性方程
  • 批准号:
    0070492
  • 财政年份:
    2000
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
  • 批准号:
    9404358
  • 财政年份:
    1994
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
  • 批准号:
    9104023
  • 财政年份:
    1991
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
  • 批准号:
    9096158
  • 财政年份:
    1989
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
  • 批准号:
    8905338
  • 财政年份:
    1989
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant

相似海外基金

Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
  • 批准号:
    2154219
  • 财政年份:
    2022
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant
Generic Singularities and Fine Regularity Structure for Nonlinear Partial Differential Equations
非线性偏微分方程的一般奇异性和精细正则结构
  • 批准号:
    2154201
  • 财政年份:
    2022
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008854/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008897/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
Regularity Questions in Linear and Nonlinear Partial Differential Equations
线性和非线性偏微分方程的正则性问题
  • 批准号:
    2055244
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Standard Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008889/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V008919/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V009060/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V009389/1
  • 财政年份:
    2021
  • 资助金额:
    $ 11.01万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了