Optimal Regularity for Nonlinear Pde's and Systems in Carnot-Caratheodory Spaces and Applications to Geometry, Symmetry for Pde's, Unique Continuation
卡诺-卡拉特奥多里空间中非线性偏微分方程和系统的最优正则性及其几何应用、偏微分方程的对称性、唯一延拓
基本信息
- 批准号:9706892
- 负责人:
- 金额:$ 11.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9706892 Garofalo The proposal is concerned with three projects: 1) Optimal regularity for nonlinear pde's and systems in Carnot-Caratheodory (CC) spaces and the applications of this theory to geometry, isoperimetric and Sobolev inequalities, minimal surfaces in (CC) spaces and their regularity, Dirichlet problem in nilpotent Lie groups: Connection between harmonic measure and perimeter, harmonic maps between CR manifolds. 2) Symmetry in overdetermined boundary value problems, both interior and exterior, in Euclidean and CR geometry, minimizers in the isoperimetric and Sobolev inequalities in the Heisenberg group, a conjecture of E. De Giorgi and its parabolic counterpart. 3) Unique continuation for sub-elliptic operators, applications to scattering, inverse problems on the Heisenberg group, unique continuation for nonlinear equations of p-Laplacian type. The proposed research sits at the confluence of two main areas of interest in mathematics known as partial differential equations and geometry. Both areas find their origin and motivation in problems arising in the observation and description of natural phenomena, at every scale. A main focus of the proposed research is, e.g., the reconstruction of the shape of a body knowing some quantities that can be measured on the surface that surrounds the body. Such a problem has a great relevance in the applied sciences and is especially important in areas of Federal strategic interest ranging from computerized tomography, to biotechnology, to control of the core of a nuclear reactor, etc. The proposed research will also contribute to the development of human resources through the involvement of young investigators (doctoral students). The principal investigator is also writing a book which will focus on those aspects of the program that has been developed over the past few years in collaboration with several doctoral students.
9706892 Garofalo The proposal is concerned with three projects: 1) Optimal regularity for nonlinear pde's and systems in Carnot-Caratheodory (CC) spaces and the applications of this theory to geometry, isoperimetric and Sobolev inequalities, minimal surfaces in (CC) spaces and their regularity, Dirichlet problem in nilpotent Lie groups: Connection between harmonic measure and周长,Cr歧管之间的谐波图。 2)在欧几里得和CR几何形状中,内部和外部的超确定边界价值问题中的对称性,在海森伯格集团的等值仪和索波列夫的不平等中,在E. de Giorgi及其寄生虫对应物中的猜想。 3)对于亚椭圆算子的独特延续,在海森堡组上的散射,逆问题的应用,p-laplacian类型的非线性方程的独特延续。 拟议的研究是两个主要的数学感兴趣领域的融合,称为部分微分方程和几何形状。这两个领域都在每个规模的自然现象的观察和描述中都发现了它们的起源和动力。拟议的研究的一个主要重点是,例如,人体形状的重建,知道可以在周围身体的表面上测量的一些数量。这样的问题在应用科学方面具有很大的意义,在从计算机层析成像到生物技术到控制核反应堆核心等领域的联邦战略兴趣方面尤为重要。拟议的研究还将通过年轻研究人员的参与(博士生)来为人力资源的发展做出贡献。首席调查员还在撰写一本书,该书将重点关注过去几年与几个博士生合作开发的计划的那些方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicola Garofalo其他文献
On an evolution equation in sub-Finsler geometry
- DOI:
- 发表时间:
2024-02 - 期刊:
- 影响因子:0
- 作者:
Nicola Garofalo - 通讯作者:
Nicola Garofalo
A Rellich type estimate for a subelliptic Helmholtz equation with mixed homogeneities
混合齐次亚椭圆亥姆霍兹方程的Rellich型估计
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Agnid Banerjee;Nicola Garofalo - 通讯作者:
Nicola Garofalo
Sub-Riemannian calculus and monotonicity of the perimeter for graphical strips
图形条的亚黎曼微积分和周长的单调性
- DOI:
10.1007/s00209-009-0533-8 - 发表时间:
2008 - 期刊:
- 影响因子:0.8
- 作者:
D. Danielli;Nicola Garofalo;Nicola Garofalo;D. Nhieu - 通讯作者:
D. Nhieu
Nicola Garofalo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicola Garofalo', 18)}}的其他基金
Monotonicity formulas, nonlinear PDE's and sub-Riemannian Geometry
单调性公式、非线性偏微分方程和亚黎曼几何
- 批准号:
1001317 - 财政年份:2010
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Nonlinear Partial Differential Equations in Sub-Riemannian Geometry
亚黎曼几何中的非线性偏微分方程
- 批准号:
0701001 - 财政年份:2007
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Some nonlinear problems in analysis and geometry
分析和几何中的一些非线性问题
- 批准号:
0300477 - 财政年份:2003
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Non-linear equations in analysis and geometry
分析和几何中的非线性方程
- 批准号:
0070492 - 财政年份:2000
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: "Unique Continuation, Quantitative Properties of Solutions and Symmetry for PDE's
数学科学:“偏微分方程的独特连续性、解的定量性质和对称性
- 批准号:
9104023 - 财政年份:1991
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
9096158 - 财政年份:1989
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Mathematical Sciences: Symmetry for PDE, Quantitative Properties of Solutions of PDE, and Unique Continuation
数学科学:偏微分方程的对称性、偏微分方程解的定量性质以及唯一连续性
- 批准号:
8905338 - 财政年份:1989
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
相似国自然基金
规律性铁-多酚配位化合物的构建及其与磁共振弛豫性能的构-效关系研究
- 批准号:22377078
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“不流动”的日常实践与身份“邂逅”——公众旅游抵制行为的规律性和可预测性研究
- 批准号:42301260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
直链淀粉—多酚复合物抗消化可控规律性研究
- 批准号:32301987
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
中、大尺寸硫醇配体保护金团簇的结构和电子结构规律性的理论研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中、大尺寸硫醇配体保护金团簇的结构和电子结构规律性的理论研究
- 批准号:22203053
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
- 批准号:
2348908 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
- 批准号:
2154219 - 财政年份:2022
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Generic Singularities and Fine Regularity Structure for Nonlinear Partial Differential Equations
非线性偏微分方程的一般奇异性和精细正则结构
- 批准号:
2154201 - 财政年份:2022
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008854/1 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant
Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
- 批准号:
EP/V008897/1 - 财政年份:2021
- 资助金额:
$ 11.01万 - 项目类别:
Research Grant