Improving accuracy and applicability of density functional theory

提高密度泛函理论的准确性和适用性

基本信息

  • 批准号:
    1856165
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Professor Kieron J. Burke of the University of California, Irvine is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to improve the accuracy and applicability of density functional calculations of electronic structure. Density functional theory (DFT) is a popular approach to computationally studying molecules and materials, allowing the design of new pharmaceuticals and materials using computers. The method has been used in more than 30,000 scientific papers each year and has resulted some impressive successes in predicting useful molecules. For example, it has been used to find a better catalyst for making ammonia, an important starting material in chemical processes producing plastics, textiles, fertilizers, dyes and other chemicals. DFT was also used to find the world's hottest superconductor, hydrogen sulfide under pressure. DFT is also used in many machine-learning applications in the physical sciences. However, even the best approximate density functionals, the basic component of DFT, have limited accuracy and ranges of applicability. Dr. Burke and his group are developing DFT methods that use machine learning to create new approximations in order to improve the computational results. He is also studying the origins of the approximations that underly DFT. The resulting improvements in DFT may have significant technological and economic impacts. Dr. Burke broadens understanding of DFT by hosting schools around the world and by training both undergraduate and graduate students in this important cross-disciplinary area of research.Dr. Burke plans to improve DFT calculations in three distinct ways: One approach that is very novel (machine-learning), one very pragmatic and simple (density-corrected DFT), and one very old and deep (semiclassical approximations to functionals). Dr. Burke has pioneered the creation of new functionals with machine learning (ML). These functionals depend on the density everywhere in space, i.e., are radically different for the local and semilocal approximations that form the heart of most modern DFT exchange-correlation functionals. Dr. Burke is investigating approaches to broadening the applicability of ML density functionals. Regarding density-corrected DFT, he is evaluating functionals on Hartree-Fock densities. He uses a new method for the so-called semiclassical approximations which may lead to much more accurate kinetic energy and exchange energy functionals for realistic systems than any in use today.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
加州大学欧文分校的基隆·J·伯克教授得到了化学部化学理论、模型和计算方法项目的支持,以提高电子结构密度泛函计算的准确性和适用性。密度泛函理论(DFT)是一种流行的计算研究分子和材料的方法,允许使用计算机设计新的药物和材料。这种方法每年被用于3万多篇科学论文,并在预测有用分子方面取得了一些令人印象深刻的成功。例如,它被用来寻找一种更好的催化剂来制造氨,氨是生产塑料、纺织品、化肥、染料和其他化学品的化学过程中的重要起始原料。DFT还被用来发现世界上最热的超导体,压力下的硫化氢。离散傅立叶变换也被用于物理科学中的许多机器学习应用。然而,作为密度泛函的基本组成部分,即使是最佳近似密度泛函,其精度和适用范围也是有限的。伯克博士和他的团队正在开发DFT方法,这种方法使用机器学习来创建新的近似,以改善计算结果。他还在研究低于DFT的近似的起源。随之而来的DFT改进可能会产生重大的技术和经济影响。伯克博士通过在世界各地举办学校,并在这一重要的跨学科研究领域培训本科生和研究生,拓宽了对DFT的理解。Burke计划在三个不同的方面改进DFT计算:一种是非常新颖的方法(机器学习),一种是非常实用和简单的(密度校正的DFT),以及一种非常古老和深入的方法(泛函的半经典近似)。Burke博士开创了使用机器学习(ML)创建新函数的先河。这些泛函依赖于空间中的密度,也就是说,对于构成大多数现代DFT交换相关泛函核心的局域和半局域近似,这些泛函是完全不同的。伯克博士正在研究扩大ML密度泛函适用性的方法。关于密度校正DFT,他正在计算关于Hartree-Fock密度的泛函。他使用了一种新的方法来进行所谓的半经典近似,这可能会导致现实系统的动能和交换能量泛函比今天使用的任何泛函都要准确得多。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Leading correction to the local density approximation for exchange in large-Z atoms
对大 Z 原子交换的局域密度近似进行了修正
  • DOI:
    10.48550/arxiv.2204.01030
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Argaman, Nathan;Redd, Jeremy: Cancio;Burke, Kieron
  • 通讯作者:
    Burke, Kieron
Deriving approximate functionals with asymptotics
用渐近函数推导近似泛函
  • DOI:
    10.1039/d0fd00057d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Burke, Kieron
  • 通讯作者:
    Burke, Kieron
Measuring Density-Driven Errors Using Kohn–Sham Inversion
使用 KohnâSham 反演测量密度驱动的误差
  • DOI:
    10.1021/acs.jctc.0c00391
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Nam, Seungsoo;Song, Suhwan;Sim, Eunji;and Burke, Kieron
  • 通讯作者:
    and Burke, Kieron
Quantifying and Understanding Errors in Molecular Geometries
量化和理解分子几何中的错误
Exact and approximate energy sums in potential wells
势井中的精确和近似能量总和
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kieron Burke其他文献

Magnetic properties of sheet silicates; 2:1:1 layer minerals
片状硅酸盐的磁性;
  • DOI:
    10.1007/bf00654348
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    O. Ballet;J. Coey;Kieron Burke
  • 通讯作者:
    Kieron Burke
Kohn-Sham regularizer for spin density functional theory and weakly correlated systems
自旋密度泛函理论和弱相关系统的 Kohn-Sham 正则化器
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhupalee Kalita;Ryan Pederson;Jie;Li Li;Google Research;Kieron Burke
  • 通讯作者:
    Kieron Burke
Perdew Festschrift editorial.
佩杜·节日文集社论。
  • DOI:
    10.1063/5.0217719
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Kieron Burke;Jianwei Sun;Weitao Yang
  • 通讯作者:
    Weitao Yang
Erratum: DFT in a nutshell
勘误表:DFT 简而言之
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kieron Burke;Lucas Wagner
  • 通讯作者:
    Lucas Wagner
Corrigendum: The Hubbard dimer: a density functional case study of a many-body problem (2015 J. Phys.: Condens. Matter 27 393001)
勘误表:哈伯德二聚体:多体问题的密度泛函案例研究 (2015 J. Phys.: Condens. Matter 27 393001)
  • DOI:
    10.1088/0953-8984/29/1/019501
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Carrascal;Jaime Ferrer;Justin C. Smith;Kieron Burke
  • 通讯作者:
    Kieron Burke

Kieron Burke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kieron Burke', 18)}}的其他基金

Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
  • 批准号:
    2154371
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Systematic approach to Density Functional Theory
密度泛函理论的系统方法
  • 批准号:
    1464795
  • 财政年份:
    2015
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Density functionals from Machine Learning
EAGER:机器学习中的密度泛函
  • 批准号:
    1240252
  • 财政年份:
    2012
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Non-empirical density functional theory for computational chemistry and materials science
计算化学和材料科学的非经验密度泛函理论
  • 批准号:
    1112442
  • 财政年份:
    2011
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Non-empirical development of density functional theory in chemistry
化学中密度泛函理论的非经验发展
  • 批准号:
    0809859
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
  • 批准号:
    0753750
  • 财政年份:
    2007
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
  • 批准号:
    0355405
  • 财政年份:
    2004
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Density Functional Chemistry -- The Ground State and Beyond
职业:密度功能化学——基态及其他
  • 批准号:
    9875091
  • 财政年份:
    1999
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
  • 批准号:
    2335170
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
  • 批准号:
    10099483
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了