EAGER: Density functionals from Machine Learning
EAGER:机器学习中的密度泛函
基本信息
- 批准号:1240252
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kieron Burke of the University of California, Irvine, is supported by an Eager award from the Chemical Theory, Models and Computational Methods program in the Chemistry Division. The award is cofunded by the Condensed Matter and Materials Theory program in the Division of Materials Research and the Computational and Data Enabled Science Program in the Division of Mathematical Science. Density functional theory (DFT) is at the heart of modern electronic structure calculations, which play an ever increasing role in chemical and material design. Present-day approximations are created by an unholy alliance of inspiration and pragmatism. Progress in their improvement is slow and unsystematic. Burke and his colleagues are applying Machine Learning (ML) to the problem of approximating density functionals. ML provides a totally new way to approximate functionals that takes maximum advantage of DFT formalism. They have demonstrated that chemical accuracy on self-consistent densities can be reached for a simple model case, and a measure of the reliability of the approximation can be given. The goal of the EAGER grant is to develop these methods in application to DFT, overcoming any challenges, and reaching the real world of electronic structure calculations as quickly as possible, by approaching the problem in a well-defined series of small steps.This project creates an entirely new subfield of theory/computation, in which machine learning (ML), a branch of computer science, is applied to electronic structure problems, a branch of theoretical physics and chemistry that allows prediction of new molecules and materials by solving the equations of quantum mechanics. New algorithms, at the cutting edge of ML research, are being developed in order to apply ML to find density functionals, needed for solving electronic structure. This is a true synergy of physical and computer sciences. Success of this proposal would revolutionize materials design, allowing millions of atoms to be treated instead of hundreds by present methods. This would truly transform predictive capability in a broad range of scientific and technological problems, from biomolecular liquid simulations to crack propagation in materials.
加州大学欧文分校的Kieron Burke获得了化学系化学理论、模型和计算方法项目的Eager奖。 该奖项由材料研究部的凝聚态物质和材料理论项目以及数学科学部的计算和数据支持科学项目共同资助。 密度泛函理论(DFT)是现代电子结构计算的核心,在化学和材料设计中发挥着越来越重要的作用。今天的近似是由灵感和实用主义的邪恶联盟创造的。在改善这些条件方面进展缓慢,而且缺乏系统性。 Burke和他的同事正在将机器学习(ML)应用于 近似密度泛函的问题。 ML提供了一种全新的方法来近似泛函,最大限度地利用DFT形式主义。 他们已经证明,对于简单的模型情况,可以达到自洽密度的化学准确性,并且可以给出近似可靠性的度量。EAGER基金的目标是开发这些方法在DFT中的应用,克服任何挑战,并通过一系列明确的小步骤来解决问题,尽快达到电子结构计算的真实的世界。该项目创建了一个全新的理论/计算子领域,其中机器学习(ML),计算机科学的分支,应用于电子结构问题,理论物理学和化学的一个分支,通过解量子力学方程来预测新的分子和材料。新的算法,在ML研究的前沿,正在开发中,以应用ML找到密度泛函,需要解决电子结构。这是物理科学和计算机科学的真正协同作用。这一提议的成功将彻底改变材料设计,允许数百万个原子而不是目前的数百个原子被处理。这将真正改变广泛的科学和技术问题的预测能力,从生物分子液体模拟到材料中的裂纹传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kieron Burke其他文献
Magnetic properties of sheet silicates; 2:1:1 layer minerals
片状硅酸盐的磁性;
- DOI:
10.1007/bf00654348 - 发表时间:
1981 - 期刊:
- 影响因子:1.4
- 作者:
O. Ballet;J. Coey;Kieron Burke - 通讯作者:
Kieron Burke
Kohn-Sham regularizer for spin density functional theory and weakly correlated systems
自旋密度泛函理论和弱相关系统的 Kohn-Sham 正则化器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bhupalee Kalita;Ryan Pederson;Jie;Li Li;Google Research;Kieron Burke - 通讯作者:
Kieron Burke
Perdew Festschrift editorial.
佩杜·节日文集社论。
- DOI:
10.1063/5.0217719 - 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Kieron Burke;Jianwei Sun;Weitao Yang - 通讯作者:
Weitao Yang
Erratum: DFT in a nutshell
勘误表:DFT 简而言之
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kieron Burke;Lucas Wagner - 通讯作者:
Lucas Wagner
Corrigendum: The Hubbard dimer: a density functional case study of a many-body problem (2015 J. Phys.: Condens. Matter 27 393001)
勘误表:哈伯德二聚体:多体问题的密度泛函案例研究 (2015 J. Phys.: Condens. Matter 27 393001)
- DOI:
10.1088/0953-8984/29/1/019501 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Carrascal;Jaime Ferrer;Justin C. Smith;Kieron Burke - 通讯作者:
Kieron Burke
Kieron Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kieron Burke', 18)}}的其他基金
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
- 批准号:
2154371 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Improving accuracy and applicability of density functional theory
提高密度泛函理论的准确性和适用性
- 批准号:
1856165 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Systematic approach to Density Functional Theory
密度泛函理论的系统方法
- 批准号:
1464795 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Non-empirical density functional theory for computational chemistry and materials science
计算化学和材料科学的非经验密度泛函理论
- 批准号:
1112442 - 财政年份:2011
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Non-empirical development of density functional theory in chemistry
化学中密度泛函理论的非经验发展
- 批准号:
0809859 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
- 批准号:
0753750 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
- 批准号:
0355405 - 财政年份:2004
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAREER: Density Functional Chemistry -- The Ground State and Beyond
职业:密度功能化学——基态及其他
- 批准号:
9875091 - 财政年份:1999
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似海外基金
Quantum Computing based density functionals for fast and accurate materials and chemistry simulations
基于量子计算的密度泛函,用于快速、准确的材料和化学模拟
- 批准号:
10074167 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Feasibility Studies
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
- 批准号:
2205521 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Understanding the errors of approximate density functionals for electron-deficient bonds
了解缺电子键的近似密度泛函的误差
- 批准号:
563898-2021 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
University Undergraduate Student Research Awards
Integrated form finding, simulation and optimization using the generalized force density method based on mixed functionals
使用基于混合泛函的广义力密度方法集成找形、仿真和优化
- 批准号:
434336509 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Pure Density Functionals for Efficient, Predictive Simulations
用于高效预测模拟的纯密度泛函
- 批准号:
1912618 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids (NSF-BSF Application)
NSF/DMR-BSF:用于预测固体激发态计算的密度泛函(NSF-BSF 应用)
- 批准号:
2015991 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Libxc - functionals for density-functional theory
Libxc - 密度泛函理论的泛函
- 批准号:
327644371 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Research Grants
NSF/DMR-BSF: Density Functionals for Predictive Excited-State Calculations of Solids
NSF/DMR-BSF:用于固体预测激发态计算的密度泛函
- 批准号:
1708892 - 财政年份:2017
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
EAGER: Rung-Reduced Density Functionals for Cost-Capped Ab Initio Molecular Dynamics
EAGER:用于成本上限从头算分子动力学的梯级约简密度泛函
- 批准号:
1515307 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Bridging the gap between accurate ab initio many-body theory and simple density-functionals
弥合精确的从头算多体理论和简单的密度泛函之间的差距
- 批准号:
EP/M029131/1 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Research Grant














{{item.name}}会员




