Non-empirical density functional theory for computational chemistry and materials science
计算化学和材料科学的非经验密度泛函理论
基本信息
- 批准号:1112442
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kieron Burke of the University of California, Irvine is supported by an award from the Chemical Theory, Models and Computational Methods program to carry out research on the development of improvements to density functional theory (DFT). The improvements focus on the development of new functionals including a kinetic energy functional, which would eliminate the need to compute orbitals, and the exchange-correlation functional to improve its reliability and accuracy. Density functional theory has become an essential tool of electronic structure calculations in many fields of chemistry, but there now exist so many empirical functionals that users are often bewildered about which one to choose, and experts regard the theory as highly empirical. The primary objective of this project is to develop an entirely new methodology for developing approximate density functionals by extending the semiclassical approximations on which the original theories were based. The approach uses a simple principle, that of asymptotic exactness as the number of electrons becomes large. The impact of Burke's work is expected to be broad and to have application in chemistry, materials science, nanoscience, and many other fields. The impact of the work will be further broadened by the development of tutorials and distribution of "DFT in a nutshell", a new and improved version of Burke's "ABCs of DFT" online notes.
加州大学欧文分校的Kieron Burke获得了化学理论、模型和计算方法项目的奖励,以开展密度泛函理论(DFT)改进的发展研究。改进的重点是开发新的泛函,包括动能泛函,这将消除计算轨道的需要,以及交换相关泛函,以提高其可靠性和准确性。密度泛函理论已成为许多化学领域电子结构计算的重要工具,但目前经验泛函太多,使用者常常不知该选择哪一个,专家们认为密度泛函理论具有高度的经验性。该项目的主要目标是通过扩展原始理论所基于的半经典近似,开发一种全新的方法来开发近似密度泛函。该方法使用了一个简单的原理,即随着电子数量的增加而逐渐精确的原理。预计伯克的工作将产生广泛的影响,并将在化学、材料科学、纳米科学和许多其他领域得到应用。这项工作的影响将通过教程的开发和“DFT概要”的分发进一步扩大,“DFT概要”是伯克“DFT abc”在线笔记的新改进版本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kieron Burke其他文献
Magnetic properties of sheet silicates; 2:1:1 layer minerals
片状硅酸盐的磁性;
- DOI:
10.1007/bf00654348 - 发表时间:
1981 - 期刊:
- 影响因子:1.4
- 作者:
O. Ballet;J. Coey;Kieron Burke - 通讯作者:
Kieron Burke
Kohn-Sham regularizer for spin density functional theory and weakly correlated systems
自旋密度泛函理论和弱相关系统的 Kohn-Sham 正则化器
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bhupalee Kalita;Ryan Pederson;Jie;Li Li;Google Research;Kieron Burke - 通讯作者:
Kieron Burke
Perdew Festschrift editorial.
佩杜·节日文集社论。
- DOI:
10.1063/5.0217719 - 发表时间:
2024 - 期刊:
- 影响因子:4.4
- 作者:
Kieron Burke;Jianwei Sun;Weitao Yang - 通讯作者:
Weitao Yang
Erratum: DFT in a nutshell
勘误表:DFT 简而言之
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kieron Burke;Lucas Wagner - 通讯作者:
Lucas Wagner
Corrigendum: The Hubbard dimer: a density functional case study of a many-body problem (2015 J. Phys.: Condens. Matter 27 393001)
勘误表:哈伯德二聚体:多体问题的密度泛函案例研究 (2015 J. Phys.: Condens. Matter 27 393001)
- DOI:
10.1088/0953-8984/29/1/019501 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Carrascal;Jaime Ferrer;Justin C. Smith;Kieron Burke - 通讯作者:
Kieron Burke
Kieron Burke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kieron Burke', 18)}}的其他基金
Aiming for Chemical Accuracy in Ground-state Density Functional Theory
追求基态密度泛函理论的化学准确性
- 批准号:
2154371 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
Improving accuracy and applicability of density functional theory
提高密度泛函理论的准确性和适用性
- 批准号:
1856165 - 财政年份:2019
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Systematic approach to Density Functional Theory
密度泛函理论的系统方法
- 批准号:
1464795 - 财政年份:2015
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
EAGER: Density functionals from Machine Learning
EAGER:机器学习中的密度泛函
- 批准号:
1240252 - 财政年份:2012
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
Non-empirical development of density functional theory in chemistry
化学中密度泛函理论的非经验发展
- 批准号:
0809859 - 财政年份:2008
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
- 批准号:
0753750 - 财政年份:2007
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
Electron-molecule Collisions From Time-dependent Density Functional Theory
来自瞬态密度泛函理论的电子分子碰撞
- 批准号:
0355405 - 财政年份:2004
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
CAREER: Density Functional Chemistry -- The Ground State and Beyond
职业:密度功能化学——基态及其他
- 批准号:
9875091 - 财政年份:1999
- 资助金额:
$ 44.4万 - 项目类别:
Continuing Grant
相似海外基金
Effects of State Preemption of Local Tobacco Control Legislation on Disparities in Tobacco Use, Exposure and Retail
国家抢先实施地方烟草控制立法对烟草使用、接触和零售差异的影响
- 批准号:
10681733 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Assessing the impact, equity, and mechanisms of a novel policy intervention to reduce tobacco retailer density in communities
评估降低社区烟草零售商密度的新颖政策干预的影响、公平性和机制
- 批准号:
10586496 - 财政年份:2023
- 资助金额:
$ 44.4万 - 项目类别:
Epigenetic mechanisms underlying the direct and moderating effects of social connectedness on complex diseases in aging
社会联系对衰老过程中复杂疾病的直接和调节作用的表观遗传机制
- 批准号:
10684313 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
Epigenetic mechanisms underlying the direct and moderating effects of social connectedness on complex diseases in aging
社会联系对衰老过程中复杂疾病的直接和调节作用的表观遗传机制
- 批准号:
10539029 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
A study of estimation and inference of the density discontinuity
密度不连续性估计与推断的研究
- 批准号:
17K13713 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and validation of empirical models of the neuronal population activity underlying non-invasive human brain measurements
开发和验证非侵入性人脑测量中神经元群活动的经验模型
- 批准号:
9975889 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Modern Empirical Likelihood Methods in Biomedicine and Health
生物医学和健康中的现代经验似然法
- 批准号:
9339725 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Modern Empirical Likelihood Methods in Biomedicine and Health
生物医学和健康中的现代经验似然法
- 批准号:
9014593 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
A new tool for measuring surface-biomolecule interactions
测量表面生物分子相互作用的新工具
- 批准号:
8662567 - 财政年份:2014
- 资助金额:
$ 44.4万 - 项目类别:
Multiscale modeling and empirical study of a mechanism limiting blood clot growth
限制血块生长机制的多尺度建模和实证研究
- 批准号:
8898196 - 财政年份:2014
- 资助金额:
$ 44.4万 - 项目类别:














{{item.name}}会员




