Microscopic Charge Transport in Molecularly Doped Organic Materials
分子掺杂有机材料中的微观电荷传输
基本信息
- 批准号:1856589
- 负责人:
- 金额:$ 46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Next generation electronics require materials that can transport electricity like metals but also offer new properties such as being flexible, light weight, low-cost, and recyclable. In this regard, all-carbon materials such as plastics are attractive, but they lack the electrical transport ability of traditional metals. Unlike metals, carbon-based plastics are rarely perfectly structured (crystalline). Their disorder makes it difficult to determine how electricity flows through them, a necessary first step in improving their electrical performance. In this project funded by the Chemical Structure, Dynamics, and Mechanisms (CSDM-A) program of the Chemistry Division, Professor Aaron Massari of the University of Minnesota-Twin Cities is using sophisticated laser techniques to study the movement of electrical charges through complex molecular materials that could act as future electrical conductors. The interdisciplinary nature of the project supports a training environment for undergraduate and graduate students that produces next-generation scientists who are skilled in benchtop chemistry, but also electrical, microscopic, and spectroscopic techniques. Ultimately, the research may not only lead to new perspectives on existing problems, but also inform the rational design of electrical materials leading to devices that are less toxic and require less energy to produce. Professor Massari serves as the Director of the Energy and U Show, which brings science to over 10,000 3rd-6th graders each year. The show is filled with vibrant scientific demonstrations and the First Law of Thermodynamics. For many, the event introduces the idea of attending college for the first time as more than half of the attendees are members of underrepresented groups. Professor Massari also directs the chemistry portion of the University on the Prairie program, where he and his research group travel to work with 60 students in grades 7-12 and their teachers from rural, geographically isolated portions of the state. These outreach and educational activities encourage STEM careers. The project focuses on the roles of structural parameters, such as polymorphism, donor-acceptor spacing, partial charge transfer, and covalent attachment of molecular dopants, in the transport of charge through ground-state doped molecular thin films. The measurements leverage the ability of two-dimensional infrared (2D-IR) spectroscopy to isolate the rates of charge transfer within specific molecular geometries from highly heterogeneous chemical environments. Short pulses of infrared light excite molecular vibrations on neutral and charge (doped) molecules in a film and then a second pair of pulses probe the evolution of that excitation as a marker for the location of the charge as a function of time. Resolving the vibrational spectrum into a second dimension allows one to monitor the kinetics of charge transfer for specific molecular configurations independent of the others so that the transport kinetics can themselves be resolved. The work systematically tests the impact of microscopic molecular spacing and order on macroscopic electrical transport by using molecules with particular structural modifications that affect their packing in known ways. Electrical transport is also driven in-situ in samples while they are characterized by 2D-IR spectroscopy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
下一代电子产品需要既能像金属一样传输电力,又具有柔韧性、重量轻、成本低和可回收等新特性的材料。在这方面,塑料等全碳材料很有吸引力,但它们缺乏传统金属的电传输能力。与金属不同,碳基塑料很少有完美的结构(结晶)。它们的无序性使得确定电流如何流过它们变得困难,而这是提高它们电气性能的必要第一步。在这个由化学部门化学结构、动力学和机制(CSDM-A)项目资助的项目中,明尼苏达大学双城分校的Aaron Massari教授正在使用复杂的激光技术来研究电荷在复杂分子材料中的运动,这些材料可以作为未来的电导体。该项目的跨学科性质为本科生和研究生提供了培养下一代科学家的培训环境,这些科学家既精通台式化学,也精通电学、显微镜和光谱技术。最终,这项研究不仅可以为现有问题带来新的视角,还可以为电气材料的合理设计提供信息,从而产生毒性更小、需要更少能量的设备。马萨里教授是能源和U展的主任,该展览每年向一万多名三至六年级的学生介绍科学。展览中充满了充满活力的科学演示和热力学第一定律。对许多人来说,这次活动首次向他们介绍了上大学的想法,因为超过一半的与会者是代表性不足的群体的成员。马萨里教授还负责“草原大学”项目的化学部分,在那里,他和他的研究小组与60名7-12年级的学生和他们的老师一起旅行,他们来自该州偏远的农村地区。这些拓展和教育活动鼓励STEM职业。该项目重点研究了结构参数,如多态性、供体-受体间距、部分电荷转移和分子掺杂物的共价附着,在电荷通过基态掺杂分子薄膜的输运中的作用。测量利用二维红外(2D-IR)光谱的能力,从高度不均匀的化学环境中分离出特定分子几何结构中的电荷转移速率。红外光的短脉冲激发薄膜中中性和带电(掺杂)分子的分子振动,然后第二对脉冲探测该激发的演变,作为电荷位置随时间的函数的标记。将振动谱分解为二维,可以监测与其他分子构型无关的特定分子构型的电荷转移动力学,从而可以解决传输动力学本身。这项工作系统地测试了微观分子间距和顺序对宏观电传输的影响,通过使用具有特定结构修饰的分子,以已知的方式影响它们的包装。电输运也驱动原位样品,而他们是由二维红外光谱表征。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectroscopic Study of Sol–Gel Entrapped Triruthenium Dodecacarbonyl Catalyst Reveals Hydride Formation
溶胶-凝胶包埋的十二羰基三钌催化剂的光谱研究揭示了氢化物的形成
- DOI:10.1021/acs.jpclett.0c02316
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Patrow, Joel G.;Cheng, Yukun;Pyles, Cynthia G.;Luo, Bing;Tonks, Ian A.;Massari, Aaron M.
- 通讯作者:Massari, Aaron M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron Massari其他文献
Aaron Massari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron Massari', 18)}}的其他基金
2022 Vibrational Spectroscopy: Unravelling Chemical Heterogeneity
2022 振动光谱学:揭示化学异质性
- 批准号:
2225585 - 财政年份:2022
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Charge Localization and Transport at Interfaces
界面上的电荷本地化和传输
- 批准号:
1611047 - 财政年份:2016
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Measuring Microscopic Charge Exchange in Heterogeneous Organic Thin Films
测量异质有机薄膜中的微观电荷交换
- 批准号:
1464416 - 财政年份:2015
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Monitoring the Evolution of Molecular Structure in Transistors by Interfacial Spectroscopy
通过界面光谱监测晶体管分子结构的演变
- 批准号:
1310000 - 财政年份:2013
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
Measuring Molecular Structure at the Active Interface in Functioning Organic Field Effect Transistors via Vibrational Sum Frequency Generation
通过振动和频率生成测量功能有机场效应晶体管有源界面的分子结构
- 批准号:
1006386 - 财政年份:2010
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
CAREER: Understanding the Influence of Fast Molecular Motions on Charge Mobilities
职业:了解快速分子运动对电荷迁移率的影响
- 批准号:
0847356 - 财政年份:2009
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
Sema3E在CHARGE综合症中的作用及机制研究
- 批准号:81160144
- 批准年份:2011
- 资助金额:52.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Charge-Spin Conversions and Nonreciprocal Transport in Chiral Materials
手性材料中的电荷自旋转换和不可逆输运
- 批准号:
2325147 - 财政年份:2024
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Understanding the role of organic ligands on charge transport and photocurrent generation in layered perovskites
了解有机配体对层状钙钛矿中电荷传输和光电流产生的作用
- 批准号:
2892542 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Studentship
New Horizons in the Atomistic Simulation of Charge and Exciton Transport in Optoelectronic Materials
光电材料中电荷和激子输运原子模拟的新视野
- 批准号:
2868548 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Studentship
Charge Transport in Symmetry Breaking Conjugated Molecular Materials: Experimental Approach by Conductivity Measurements under CPL Excitation
对称破缺共轭分子材料中的电荷传输:CPL 激励下电导率测量的实验方法
- 批准号:
23KF0045 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: CAS: A Building Block Approach to Study Charge Transport: From Single-Molecule to Bulk
职业:CAS:研究电荷传输的构建方法:从单分子到整体
- 批准号:
2239614 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Continuing Grant
LEAPS-MPS: Time- and depth-resolved charge carrier transport in phase stable hybrid perovskites
LEAPS-MPS:相稳定杂化钙钛矿中的时间和深度分辨载流子传输
- 批准号:
2316827 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Charge Transport and Carrier-Phonon Interactions in Soft Lattice Metal Halide Perovskites
软晶格金属卤化物钙钛矿中的电荷传输和载流子-声子相互作用
- 批准号:
2324943 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
Improvement of efficiency of light-energy conversion devices by introducing metal complexes and charge transport layers
通过引入金属配合物和电荷传输层提高光能转换器件的效率
- 批准号:
23K04908 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electrically Conductive 2D Metal-Organic Frameworks and Covalent Organic Frameworks Featuring Built-in Alternating pi-Donor/Acceptor Stacks with Efficient Charge Transport Capacity
导电二维金属有机框架和共价有机框架,具有内置交替 pi 供体/受体堆栈,具有高效的电荷传输能力
- 批准号:
2321365 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Standard Grant
pi-electron charge transport mechanism of organic semiconductor materials with spatial correlation based on structural order
基于结构有序的空间相关性有机半导体材料π电子电荷输运机制
- 批准号:
23K03922 - 财政年份:2023
- 资助金额:
$ 46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)