Collaborative Research: RoL: Deep-learning framework to quantify emergent phenotypes for functional gene annotation

合作研究:RoL:量化功能基因注释的新兴表型的深度学习框架

基本信息

  • 批准号:
    1856742
  • 负责人:
  • 金额:
    $ 70.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The goal of this work is to leverage recent advantages in machine learning to connect the collective behavior of cells in a bacterial biofilm to their underlying genetic networks. How cells self-organize into complex tissues is one of the greatest puzzles in modern developmental biology and a hallmark example of emergent behavior - complex patterns arising from simpler interacting components. Despite tremendous progress, even the best-studied model systems lack an understanding of the emergent properties that bridge developmental phenomena from molecules to cells, tissues, and eventually complete organisms. Biofilms formed by the soil bacterium Myxococcus xanthus are a great model system to study emergent behavior. Under starvation, an M. xanthus biofilm initiates a developmental program during which cells aggregate into mounds and then differentiate into distinct cell types. Many of the genes that influence M. xanthus development have been identified, but researchers lack metrics to systematically understand their role in coordinating self-organization dynamics. This project aims to link genes and emergent behavior through machine-learning-based quantification of the developmental impact of gene disruptions. The methodology developed in this project is expected to be broadly applicable. Broader impacts of the proposal will be further enhanced by training opportunities for students for all participating laboratories, facilitated by close interactions such as joint meetings and trainee collaborations. Furthermore, project outreach will include collaborative efforts to bring 3D-printed microscopes into AP Biology high school classrooms. Connecting genotypes to emergent multicellular phenotypes is one of the grand challenges of 21st century biology. The lack of robust metrics that quantify the effects of genetic perturbations on emergent patterns significantly impedes our ability to make progress even for relatively simple model systems such as Myxococcus xanthus. Three major problems exist: (1) individual cell movements are inherently stochastic, and their collective emergent patterns display significant variations between experimental replicates; (2) emergent patterns displayed during development are unpredictable and extremely sensitivity to changes in environmental conditions; (3) developmental phenotypes of mutant strains are often subtle and difficult to characterize and quantify. Until these problems are addressed, it may be difficult to separate the phenotypic impact of mutation from the effects of stochasticity and environmental sensitivity. Notably, these problems are not unique to M. xanthus, and therefore their solution has the potential to be transformative across many different biological systems that display emergent multicellular behaviors. Recent advances in application of deep learning in computer vision have demonstrated the power of these approaches to deal with similar problems. Therefore, developed approaches are expected to apply to a wide range of model systems, just as deep-learning-based image quantification methods are being applied to a vast array of images from a variety of fields.This work is jointly funded by Integrated Organismal Systems (IOS), Molecular Cell Biology (MCB) and the Rules of Life (RoL) venture fund.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项工作的目标是利用机器学习的最新优势,将细菌生物膜中细胞的集体行为与其潜在的遗传网络联系起来。细胞如何自我组织成复杂的组织是现代发育生物学中最大的难题之一,也是涌现行为的一个典型例子--复杂的模式来自于简单的相互作用的成分。尽管取得了巨大的进步,但即使是研究得最好的模型系统也缺乏对从分子到细胞、组织乃至最终完整生物体的发育现象的涌现特性的理解。由土壤细菌粘球菌形成的生物膜是研究突现行为的一个很好的模型系统。在饥饿状态下,M.苍耳属生物膜启动发育程序,在此期间细胞聚集成土丘,然后分化成不同的细胞类型。许多影响M. xanthus的发展已经确定,但研究人员缺乏系统地了解其在协调自组织动态中的作用的指标。该项目旨在通过基于机器学习的量化基因中断对发育的影响,将基因和紧急行为联系起来。预计该项目中制定的方法将广泛适用。通过为所有参与实验室的学生提供培训机会,并通过联合会议和学员合作等密切互动,进一步加强该提案的更广泛影响。此外,项目推广将包括将3D打印显微镜带入AP生物高中教室的合作努力。将基因型与新出现的多细胞表型联系起来是21世纪世纪生物学的重大挑战之一。缺乏强有力的指标,量化的影响,基因扰动的紧急模式显着阻碍了我们的能力,即使是相对简单的模型系统,如粘球菌xanthus取得进展。存在三大问题:(1)单个细胞运动具有内在随机性,它们的集体涌现模式在实验重复之间显示出显著变化;(2)发育期间显示的涌现模式是不可预测的,对环境条件的变化极其敏感;(3)突变株的发育表型通常是微妙的,难以表征和量化。在这些问题得到解决之前,可能很难将突变的表型影响与随机性和环境敏感性的影响区分开来。值得注意的是,这些问题并不是M所独有的。因此,它们的解决方案有可能在许多不同的生物系统中发生变革,这些生物系统显示出紧急的多细胞行为。深度学习在计算机视觉中应用的最新进展已经证明了这些方法处理类似问题的能力。因此,开发的方法有望应用于广泛的模型系统,就像基于深度学习的图像量化方法正在应用于来自各个领域的大量图像一样。这项工作由综合有机系统(IOS)联合资助,分子细胞生物学(MCB)和生命规则(RoL)该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data-Driven Models Reveal Mutant Cell Behaviors Important for Myxobacterial Aggregation
数据驱动模型揭示突变细胞行为对粘细菌聚集很重要
  • DOI:
    10.1128/msystems.00518-20
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Zhang, Zhaoyang;Cotter, Christopher R.;Lyu, Zhe;Shimkets, Lawrence J.;Igoshin, Oleg A.;Rust, Michael
  • 通讯作者:
    Rust, Michael
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Igoshin其他文献

Synergy between pausing and cleavage-factor-assisted-proofreading results in optimal transcription speed and tolerable accuracy
  • DOI:
    10.1016/j.bpj.2022.11.579
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Tripti Midha;Anatoly B. Kolomeisky;Oleg Igoshin
  • 通讯作者:
    Oleg Igoshin

Oleg Igoshin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Igoshin', 18)}}的其他基金

Collaborative Research: Mechanisms of Multicellular Self-Organization in Myxococcus Xanthus
合作研究:黄粘球菌多细胞自组织机制
  • 批准号:
    1903275
  • 财政年份:
    2019
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative research: Information integration by gene regulatory networks controlling bacterial cell fate decisions
合作研究:通过控制细菌细胞命运决定的基因调控网络进行信息整合
  • 批准号:
    1616755
  • 财政年份:
    2016
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Decoding the Self-Organization Mechanism during Myxococcus Xanthus Multicellular Development with Quantitative Experiments and Mathematical Modeling
合作研究:通过定量实验和数学建模解码黄粘球菌多细胞发育过程中的自组织机制
  • 批准号:
    1411780
  • 财政年份:
    2014
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: Information Processing by Gene Regulatory Network Controlling Bacterial Sporulation
合作研究:控制细菌孢子形成的基因调控网络的信息处理
  • 批准号:
    1244135
  • 财政年份:
    2013
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
CAREER: Self-organization mechanisms in Myxococcus xanthus swarms
职业:黄色粘球菌群的自组织机制
  • 批准号:
    0845919
  • 财政年份:
    2009
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

RoL: COLLABORATIVE RESEARCH: EXTREME ENVIRONMENTS, PHYSIOLOGICAL ADAPTATION, AND THE ORIGIN OF SPECIES
ROL:合作研究:极端环境、生理适应和物种起源
  • 批准号:
    2423844
  • 财政年份:
    2023
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Standard Grant
ROL: COLLABORATIVE RESEARCH: EXTREME ENVIRONMENTS, PHYSIOLOGICAL ADAPTATION, AND THE ORIGIN OF SPECIES
ROL:合作研究:极端环境、生理适应和物种起源
  • 批准号:
    2311366
  • 财政年份:
    2023
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110533
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL-Rules for Dynamic-Light Environmental Sculpting of Genomes
合作研究:基因组动态光环境塑造的 RoL 规则
  • 批准号:
    2034777
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL-Rules for Dynamic-Light Environmental Sculpting of Genomes
合作研究:基因组动态光环境塑造的 RoL 规则
  • 批准号:
    2034929
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: The Evolution of the Genotype-Phenotype Map across Budding Yeasts
合作研究:RoL:出芽酵母基因型-表型图谱的演变
  • 批准号:
    2110403
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The Evolution of the Genotype-Phenotype Map across Budding Yeasts
合作研究:RoL:出芽酵母基因型-表型图谱的演变
  • 批准号:
    2110404
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110534
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110532
  • 财政年份:
    2021
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Continuing Grant
COLLABORATIVE RESEARCH: RoL: The evolution and maintenance of variable species boundaries
合作研究:RoL:可变物种边界的进化和维持
  • 批准号:
    2012041
  • 财政年份:
    2020
  • 资助金额:
    $ 70.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了