ROL: COLLABORATIVE RESEARCH: EXTREME ENVIRONMENTS, PHYSIOLOGICAL ADAPTATION, AND THE ORIGIN OF SPECIES

ROL:合作研究:极端环境、生理适应和物种起源

基本信息

  • 批准号:
    2311366
  • 负责人:
  • 金额:
    $ 60.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Extreme environments allow for the investigation of life's capacity and limitations to cope with far-from-average environmental conditions. Springs rich in hydrogen sulfide represent some of the most extreme freshwater environments because hydrogen sulfide halts energy production in animal cells. Nonetheless, some fish have colonized sulfide springs throughout the Americas and have evolved into new species in the process. This project will investigate how the genetic changes that mediate the fish's ability to tolerate hydrogen sulfide impact their ability to successfully interbreed with related fish that live in adjacent freshwater streams. It involves the identification of genetic differences between hydrogen sulfide-tolerant and susceptible populations, particularly in genes associated with pathways affected by hydrogen sulfide toxicity. In addition, it will be tested how hybrids between tolerant and susceptible populations differ from their parents. Specifically, the function of mitochondria and whole organisms will be compared between parents and hybrids in presence or absence of hydrogen sulfide. This project will yield new insights into how adaptation to environmental stress leads to genetic incompatibilities that represent barriers for interbreeding between populations, and thus, into how new species form. This project provides training opportunities in integrative biology for participants at all levels of higher education. It will also contribute to science education and public outreach by training scientists to become effective science communicators and reach non-expert audiences in collaboration with informal education institutions. Natural selection drives adaptive evolution and can cause speciation. However, the potential role of intrinsic genetic incompatibilities during speciation with gene flow remains largely unknown. Investigating speciation with gene flow in the context of physiological adaptation allows closing existing gaps of knowledge. This is possible through integrated analyses of how selection shapes genomic divergence, how recombination of divergent genomes in hybrids affects physiological function, and how these functional consequences affect the speciation process. This project tests a priori predictions about the links between physiological adaptation to toxic hydrogen sulfide and the emergence of reproductive isolation. It will focus on components of a highly conserved metabolic pathway, oxidative phosphorylation (OXPHOS), which plays a central role in adaptation to hydrogen sulfide. Because OXPHOS components are encoded by both the mitochondrial and the nuclear genomes, theory predicts that adaptive modification of OXPHOS should give rise to mitonuclear incompatibilities and contribute to the speciation process. This project investigates the mechanistic links between physiological adaptation and speciation by testing a priori predictions about (1) how OXPHOS adaptation affects genomic divergence between populations living in different environments, (2) the functional consequences of mitonuclear incompatibilities at the biochemical, physiological, and organismal levels, and (3) the relative role of mitonuclear incompatibilities during speciation. The project employs an integrative approach that combines population genomics, assays of enzyme, organelle, and whole organism function, as well as field and laboratory experiments for the quantification of multiple pre- and postzygotic mechanisms of reproductive isolation.This award was co-funded by BIO/Emerging Frontiers, DEB/Evolutionary Processes, and IOS/Integrative Ecological Physiology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极端环境允许调查生命的能力和局限性,以科普远离平均环境条件。富含硫化氢的泉水代表了一些最极端的淡水环境,因为硫化氢会停止动物细胞的能量生产。尽管如此,一些鱼类已经在整个美洲的硫化物泉中定居,并在此过程中进化成新的物种。该项目将研究介导鱼类耐受硫化氢的能力的遗传变化如何影响它们与生活在邻近淡水溪流中的相关鱼类成功杂交的能力。它涉及识别硫化氢耐受性和易感人群之间的遗传差异,特别是与硫化氢毒性影响途径相关的基因。此外,还将测试耐受和易感群体之间的杂交种与其亲本的差异。具体而言,线粒体和整个生物体的功能将在存在或不存在硫化氢的情况下在亲本和杂种之间进行比较。该项目将产生新的见解,以适应环境压力如何导致遗传不相容性,这是种群间杂交的障碍,从而进入新物种的形成。该项目为各级高等教育的参与者提供综合生物学方面的培训机会。它还将与非正规教育机构合作,通过培训科学家成为有效的科学传播者和接触非专家受众,促进科学教育和公众宣传。自然选择推动适应性进化,并可能导致物种形成。然而,在物种形成与基因流的内在遗传不相容性的潜在作用在很大程度上仍然未知。在生理适应的背景下,研究物种形成与基因流,可以缩小现有的知识差距。这是可能的,通过综合分析选择如何塑造基因组的分歧,不同的基因组在杂交种中的重组如何影响生理功能,以及这些功能的后果如何影响物种形成过程。该项目测试了对有毒硫化氢的生理适应和生殖隔离的出现之间的联系的先验预测。它将集中在一个高度保守的代谢途径,氧化磷酸化(OXPHOS)的组成部分,它在适应硫化氢中发挥着核心作用。由于OXPHOS组分由线粒体和核基因组编码,理论预测OXPHOS的适应性修饰应该引起线粒体不相容性并有助于物种形成过程。该项目调查生理适应和物种形成之间的机制联系,通过测试先验预测(1)OXPHOS适应如何影响生活在不同环境中的种群之间的基因组差异,(2)在生物化学,生理学和有机体水平上线粒体不相容性的功能后果,以及(3)线粒体不相容性在物种形成过程中的相对作用。该项目采用了一种综合方法,结合了群体基因组学,酶,细胞器和整个生物体功能的测定,以及田间和实验室实验,用于量化生殖隔离的多种前合子和后合子机制。该奖项由BIO/Emerging Frontiers,DEB/Evolutionary Processes,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Selection on standing genetic variation mediates convergent evolution in extremophile fish
对常存遗传变异的选择介导极端微生物鱼类的趋同进化
  • DOI:
    10.1111/mec.17081
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Ryan, Kara;Greenway, Ryan;Landers, Jake;Arias‐Rodriguez, Lenin;Tobler, Michael;Kelley, Joanna L.
  • 通讯作者:
    Kelley, Joanna L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joanna Kelley其他文献

Joanna Kelley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joanna Kelley', 18)}}的其他基金

Genome Evolution in Polar Fishes
极地鱼类的基因组进化
  • 批准号:
    2312253
  • 财政年份:
    2023
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
ROL: COLLABORATIVE RESEARCH: EXTREME ENVIRONMENTS, PHYSIOLOGICAL ADAPTATION, AND THE ORIGIN OF SPECIES
ROL:合作研究:极端环境、生理适应和物种起源
  • 批准号:
    1931650
  • 财政年份:
    2020
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
Genome Evolution in Polar Fishes
极地鱼类的基因组进化
  • 批准号:
    1906015
  • 财政年份:
    2019
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Physiological Adaptation to Extreme Environments: Genes, Function, and Evolutionary Patterns
合作研究:极端环境的生理适应:基因、功能和进化模式
  • 批准号:
    1557795
  • 财政年份:
    2016
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant

相似海外基金

RoL: COLLABORATIVE RESEARCH: EXTREME ENVIRONMENTS, PHYSIOLOGICAL ADAPTATION, AND THE ORIGIN OF SPECIES
ROL:合作研究:极端环境、生理适应和物种起源
  • 批准号:
    2423844
  • 财政年份:
    2023
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110533
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL-Rules for Dynamic-Light Environmental Sculpting of Genomes
合作研究:基因组动态光环境塑造的 RoL 规则
  • 批准号:
    2034777
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL-Rules for Dynamic-Light Environmental Sculpting of Genomes
合作研究:基因组动态光环境塑造的 RoL 规则
  • 批准号:
    2034929
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
Collaborative Research: RoL: The Evolution of the Genotype-Phenotype Map across Budding Yeasts
合作研究:RoL:出芽酵母基因型-表型图谱的演变
  • 批准号:
    2110403
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The Evolution of the Genotype-Phenotype Map across Budding Yeasts
合作研究:RoL:出芽酵母基因型-表型图谱的演变
  • 批准号:
    2110404
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110534
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant
Collaborative Research: RoL: The intersection between cell fate decisions and phenotypic diversification in a rapidly radiating butterfly lineage
合作研究:RoL:快速辐射蝴蝶谱系中细胞命运决定和表型多样化之间的交叉点
  • 批准号:
    2110532
  • 财政年份:
    2021
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Continuing Grant
IIBR RoL: Collaborative Research: A Rules Of Life Engine (RoLE) Model to Uncover Fundamental Processes Governing Biodiversity
IIBR RoL:协作研究:揭示生物多样性基本过程的生命规则引擎 (RoLE) 模型
  • 批准号:
    2104147
  • 财政年份:
    2020
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
Collaborative research: RoL: The reaction norm as the basis for predicting population responses to environmental change at regional scales
合作研究:RoL:反应范数作为预测区域尺度人口对环境变化反应的基础
  • 批准号:
    1927009
  • 财政年份:
    2020
  • 资助金额:
    $ 60.39万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了