Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
基本信息
- 批准号:1900567
- 负责人:
- 金额:$ 72.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Plant leaves have thousands of microscopic adjustable pores in their leaf surface, called stomata. These stomatal pores in the surface of leaves open and close to regulate the necessary uptake of carbon dioxide into plants from the air. However, these stomatal pores also are the main pathway by which plants lose water, by evaporation. A typical plant loses 200 to 500 water molecules through these stomatal pores for every carbon atom that is absorbed (assimilated) by the plant for growth. The opening and closing of stomata is regulated by signals that include the concentration of carbon dioxide (CO2) in the air. The concentration of CO2 in the air is now 50% higher and rising, compared to only 150 years ago, meaning that plants could theoretically more efficiently take up CO2 from the air, while losing less water. However, important mechanisms and genes that mediate this agronomically relevant CO2 response of stomatal pore aperture regulation remain unknown. This project will characterize newly found key genes and proteins and define cellular networks through which elevated carbon dioxide controls the closing of stomatal pores and how low CO2 controls the opening of stomatal pores. This research can develop the knowledge necessary for the breeding of plants with improved growth properties and enhanced water use efficiency. The ability to manipulate the response of stomatal pores to carbon dioxide is important for unfavorable weather conditions, agricultural ground water depletion and droughts that are becoming more frequent in several of the major agricultural regions in the US as well as globally. The scientists will pursue an outreach program with research internships, professional preparation and mentoring with the public Preuss School for disadvantaged high school students in San Diego County, as well as training and professional preparation of visiting underrepresented summer research interns with UC San Diego's ENLACE program and with Howard University. Project personnel will be active within community outreach work that brings science and innovation close to the public and the investigators will participate in a recently launched outreach program through presentations and discussions with underrepresented students at inner city high schools in San Diego.This project will use a combination of cell biological, biochemical, molecular genetic, mathematical modeling, genomic and systems biological approaches to identify new critical molecular components of the CO2 signaling network and characterize how this network operates to regulate stomatal pore apertures. The focus of this project is to identify how the CO2 stimulus is transmitted into the stomatal movement network, with these goals: (1) Biochemical mechanisms and network principles will be determined by which newly identified genes and the encoded proteins mediate early CO2 sensing and signal transduction. (2) New hypotheses will be investigated on how cell-to-cell signaling in leaves affects CO2 control of stomatal movements by combined computational modeling, genetics, metabolomics and molecular cell biology. (3) Newly isolated "chill" mutants that have cooler leaf temperatures and are defective in the dynamic CO2 response of grass stomata will be mapped and the underlying gene and protein of at least one rate-limiting gene will be isolated and its functions in stomatal movements of the specialized dumbbell-shaped guard cells of grasses will be determined.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物叶子的叶子表面有数千个微小的可调节孔隙,称为气孔。叶子表面的这些气孔打开和关闭,以调节植物从空气中吸收必要的二氧化碳。然而,这些气孔也是植物通过蒸发失去水分的主要途径。典型的植物在生长过程中吸收(同化)每一个碳原子,就会通过这些气孔损失 200 到 500 个水分子。气孔的打开和关闭受空气中二氧化碳 (CO2) 浓度等信号的调节。与 150 年前相比,现在空气中二氧化碳的浓度增加了 50%,并且还在不断上升,这意味着理论上植物可以更有效地从空气中吸收二氧化碳,同时损失更少的水。然而,调节气孔孔径调节的农艺相关二氧化碳反应的重要机制和基因仍然未知。该项目将描述新发现的关键基因和蛋白质的特征,并定义细胞网络,通过该网络,升高的二氧化碳控制气孔的关闭,以及低二氧化碳如何控制气孔的打开。这项研究可以开发培育具有改善生长特性和提高水分利用效率的植物所需的知识。控制气孔对二氧化碳的反应的能力对于不利的天气条件、农业地下水枯竭和干旱非常重要,这些在美国和全球的几个主要农业地区变得越来越频繁。科学家们将在公立普鲁斯学校为圣地亚哥县的弱势高中生开展研究实习、专业准备和指导等外展项目,并与加州大学圣地亚哥分校的 ENLACE 项目和霍华德大学一起为访问人数不足的暑期研究实习生提供培训和专业准备。项目人员将积极参与社区外展工作,使科学和创新更接近公众,研究人员将通过与圣地亚哥市中心高中代表性不足的学生进行演示和讨论,参与最近启动的外展计划。该项目将结合使用细胞生物学、生化、分子遗传学、数学模型、基因组和系统生物学方法来识别二氧化碳信号传导的新关键分子成分 网络并描述该网络如何运作来调节气孔孔径。该项目的重点是确定二氧化碳刺激如何传递到气孔运动网络中,目标如下:(1)将确定新发现的基因和编码蛋白介导早期二氧化碳传感和信号转导的生化机制和网络原理。 (2) 将通过结合计算模型、遗传学、代谢组学和分子细胞生物学,研究叶子中细胞间信号传导如何影响二氧化碳对气孔运动的控制的新假设。 (3) 将绘制新分离的“寒冷”突变体,这些突变体具有较低的叶温,并且草气孔的动态 CO2 反应有缺陷,并且将分离至少一种限速基因的潜在基因和蛋白质,并确定其在草类特殊哑铃形保卫细胞气孔运动中的功能。该奖项反映了 NSF 的法定使命,并被认为值得通过以下方式支持: 使用基金会的智力价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FRET kinase sensor development reveals SnRK2/OST1 activation by ABA but not by MeJA and high CO2 during stomatal closure
- DOI:10.7554/elife.56351
- 发表时间:2020-05
- 期刊:
- 影响因子:7.7
- 作者:Li Zhang;Yohei Takahashi;P. Hsu;Kollist Hannes;E. Merilo;P. Krysan;J. Schroeder
- 通讯作者:Li Zhang;Yohei Takahashi;P. Hsu;Kollist Hannes;E. Merilo;P. Krysan;J. Schroeder
Signaling mechanisms in abscisic acid-mediated stomatal closure.
- DOI:10.1111/tpj.15067
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Hsu PK;Dubeaux G;Takahashi Y;Schroeder JI
- 通讯作者:Schroeder JI
MPK12 in stomatal CO2 signaling: function beyond its kinase activity
MPK12 在气孔 CO2 信号传导中的作用:其功能超出其激酶活性
- DOI:10.1111/nph.18913
- 发表时间:2023
- 期刊:
- 影响因子:9.4
- 作者:Yeh, Chung‐Yueh;Wang, Yuh‐Shuh;Takahashi, Yohei;Kuusk, Katarina;Paul, Karnelia;Arjus, Triinu;Yadlos, Oleksii;Schroeder, Julian I.;Ilves, Ivar;Garcia‐Sosa, Alfonso T.
- 通讯作者:Garcia‐Sosa, Alfonso T.
Monitoring and mitigation of toxic heavy metals and arsenic accumulation in food crops: A case study of an urban community garden
- DOI:10.1002/pld3.198
- 发表时间:2020-01-01
- 期刊:
- 影响因子:3
- 作者:Cooper, Andrew M.;Felix, Didra;Schroeder, Julian, I
- 通讯作者:Schroeder, Julian, I
Boolink: a graphical interface for open access Boolean network simulations and use in guard cell CO2 signaling
- DOI:10.1093/plphys/kiab344
- 发表时间:2021-07-24
- 期刊:
- 影响因子:7.4
- 作者:Karanam, Aravind;He, David;Rappel, Wouter-Jan
- 通讯作者:Rappel, Wouter-Jan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julian Schroeder其他文献
真核型の脂質代謝経路は気孔の葉緑体形成 および気孔開閉応答に必須である
真核脂质代谢途径对于气孔叶绿体形成和气孔开/关反应至关重要。
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
祢冝 淳太郎;宗正 晋太郎;宋 普錫;多田隈 遼亮; 楠見 健介;西田 生郎;Julian Schroeder;射場 厚 - 通讯作者:
射場 厚
Impurity Effect on Edge-modes of Graphene
杂质对石墨烯边缘模式的影响
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
祢冝淳太郎;楠見健介;宗正晋太郎;藤田麻友美;Julian Schroeder;射場 厚;河上裕;S. Oshima and M. Eto - 通讯作者:
S. Oshima and M. Eto
Edema is not a reliable diagnostic sign to exclude small brain metastases
水肿并不是排除小脑转移瘤的可靠诊断标志
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.7
- 作者:
T. Schneider;Jan Felix Kuhne;Paul Bittrich;Julian Schroeder;T. Magnus;M. Mohme;M. Grosser;G. Schoen;J. Fiehler;S. Siemonsen - 通讯作者:
S. Siemonsen
Pathway Reconstitution of Abscisic Acid Hormone Activation of SLAC1 Anion Channels via Novel ABA Signaling Protein Kinase
- DOI:
10.1016/j.bpj.2011.11.3003 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Dennis Brodsky;Benjamin Brandt;Shaowu Xue;Juntaro Negi;Koh Iba;Jaakko Kangasjarvi;Julian Schroeder - 通讯作者:
Julian Schroeder
真核型の脂質代謝経路は気孔の葉緑体形成およびCO2応答に必須である
真核脂质代谢途径对于气孔叶绿体形成和 CO2 响应至关重要
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
祢冝 淳太郎;宗正 晋太郎;宋 普錫;多田隈 遼亮;藤田 麻友美;楠見 健介;西田 生郎;Julian Schroeder;射場 厚 - 通讯作者:
射場 厚
Julian Schroeder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julian Schroeder', 18)}}的其他基金
Molecular Mechanisms of Stomatal Carbon Dioxide Signal Transduction in Plants
植物气孔二氧化碳信号转导的分子机制
- 批准号:
1616236 - 财政年份:2016
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction in Plants
植物中CO2信号转导的分子机制
- 批准号:
1414339 - 财政年份:2014
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
IGERT Plant System Biology Interdisciplinary Graduate Training Program
IGERT植物系统生物学跨学科研究生培养项目
- 批准号:
0504645 - 财政年份:2005
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
Molecular Mechanisms of CO2 Signal Transduction
CO2信号转导的分子机制
- 批准号:
0417118 - 财政年份:2004
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
Conference on Specificity and Crosstalk in Plant Signal Transduction being held on January 22 - 27 2002: in Tahoe City, California.
植物信号转导中的特异性和串扰会议于 2002 年 1 月 22 日至 27 日在加利福尼亚州塔霍市举行。
- 批准号:
0123960 - 财政年份:2001
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
- 批准号:
0077791 - 财政年份:2000
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
U.S.-France Cooperative Research: Voltage Dependent Calcium Channels in Higher Plants
美法合作研究:高等植物中电压依赖性钙通道
- 批准号:
9603438 - 财政年份:1997
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Ion Channel Regulation in Higher Plants
高等植物中的离子通道调节
- 批准号:
9506191 - 财政年份:1995
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
Presidential Young Investigator Award
总统青年研究员奖
- 批准号:
9157178 - 财政年份:1991
- 资助金额:
$ 72.27万 - 项目类别:
Continuing Grant
相似国自然基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
- 批准号:
2222519 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
ORCC: Collaborative Research: Mechanisms underpinning the unusual, high CO2 sensitivity of sand lances, key forage fishes on the Northwest Atlantic Shelf
ORCC:合作研究:西北大西洋陆架上主要饲料鱼沙矛对二氧化碳异常敏感的机制
- 批准号:
2307813 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
ORCC: Collaborative Research: Mechanisms underpinning the unusual, high CO2 sensitivity of sand lances, key forage fishes on the Northwest Atlantic Shelf
ORCC:合作研究:西北大西洋陆架上主要饲料鱼沙矛对二氧化碳异常敏感的机制
- 批准号:
2307815 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Collaborative Research: ORCC: Carbon fixation in future oceans: experimental adaptation of algal and cyanobacterial CO2-concentrating mechanisms to a changing climate
合作研究:ORCC:未来海洋的碳固定:藻类和蓝藻二氧化碳浓缩机制对气候变化的实验适应
- 批准号:
2222518 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
ORCC: Collaborative Research: Mechanisms underpinning the unusual, high CO2 sensitivity of sand lances, key forage fishes on the Northwest Atlantic Shelf
ORCC:合作研究:西北大西洋陆架上主要饲料鱼沙矛对二氧化碳异常敏感的机制
- 批准号:
2307814 - 财政年份:2023
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Acute Cognitive Impairments Following Exposure to Inhaled CO2: Translating Mouse Mechanisms to Humans
吸入二氧化碳后的急性认知障碍:将小鼠机制转化为人类
- 批准号:
10527565 - 财政年份:2022
- 资助金额:
$ 72.27万 - 项目类别:
Mechanisms and rate of anthropogenic CO2 uptake in Canadian coastal waters and the response of shallow and deep-ocean carbonate sediments to ocean acidification.
加拿大沿海水域人为二氧化碳吸收的机制和速率以及浅海和深海碳酸盐沉积物对海洋酸化的响应。
- 批准号:
RGPIN-2018-04421 - 财政年份:2022
- 资助金额:
$ 72.27万 - 项目类别:
Discovery Grants Program - Individual
Molecular mechanisms of proton-sensing in CO2-dependent breathing
CO2 依赖性呼吸中质子传感的分子机制
- 批准号:
10740838 - 财政年份:2022
- 资助金额:
$ 72.27万 - 项目类别:
RII Track-4: NSF: Inhibition of Catalytic Deactivation Mechanisms during CO2 Utilization
RII Track-4:NSF:二氧化碳利用过程中催化失活机制的抑制
- 批准号:
2132037 - 财政年份:2022
- 资助金额:
$ 72.27万 - 项目类别:
Standard Grant
Acute Cognitive Impairments Following Exposure to Inhaled CO2: Translating Mouse Mechanisms to Humans
吸入二氧化碳后的急性认知障碍:将小鼠机制转化为人类
- 批准号:
10688101 - 财政年份:2022
- 资助金额:
$ 72.27万 - 项目类别:














{{item.name}}会员




